- -

Histological interpretation of spitzoid tumours: an extensive machine learning-based concordance analysis for improving decision making

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Histological interpretation of spitzoid tumours: an extensive machine learning-based concordance analysis for improving decision making

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mosquera-Zamudio, Andrés es_ES
dc.contributor.author Launet, Laetitia Mariana es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Wiedemeyer, Katharina es_ES
dc.contributor.author López-Takegami, Juan C. es_ES
dc.contributor.author Palma, Luis F. es_ES
dc.contributor.author Undersrud, Erling es_ES
dc.contributor.author Janssen, Emilius es_ES
dc.contributor.author Brenn, Thomas es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Monteagudo, Carlos es_ES
dc.date.accessioned 2024-09-05T18:23:39Z
dc.date.available 2024-09-05T18:23:39Z
dc.date.issued 2024-07 es_ES
dc.identifier.issn 0309-0167 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207484
dc.description.abstract [EN] The histopathological classification of melanocytic tumours with spitzoid features remains a challenging task. We confront the complexities involved in the histological classification of these tumours by proposing machine learning (ML) algorithms that objectively categorise the most relevant features in order of importance. The data set comprises 122 tumours (39 benign, 44 atypical and 39 malignant) from four different countries. BRAF and NRAS mutation status was evaluated in 51. Analysis of variance score was performed to rank 22 clinicopathological variables. The Gaussian naive Bayes algorithm achieved in distinguishing Spitz naevus from malignant spitzoid tumours with an accuracy of 0.95 and kappa score of 0.87, utilising the 12 most important variables. For benign versus non-benign Spitz tumours, the test reached a kappa score of 0.88 using the 13 highest-scored features. Furthermore, for the atypical Spitz tumours (AST) versus Spitz melanoma comparison, the logistic regression algorithm achieved a kappa value of 0.66 and an accuracy rate of 0.85. When the three categories were compared most AST were classified as melanoma, because of the similarities on histological features between the two groups. Our results show promise in supporting the histological classification of these tumours in clinical practice, and provide valuable insight into the use of ML to improve the accuracy and objectivity of this process while minimising interobserver variability. These proposed algorithms represent a potential solution to the lack of a clear threshold for the Spitz/spitzoid tumour classification, and its high accuracy supports its usefulness as a helpful tool to improve diagnostic decision-making.; Our machine learning models improve histopathological diagnostic decision-making, ranking the importance of the histological variables for the classification of Spitz and spitzoid tumours. image es_ES
dc.description.sponsorship This work has received funding from Horizon 2020, the European Commission's Framework Programme for Research and Innovation, under the grant agreement no. 860627 (CLARIFY), PI20/00094, Instituto de Salud Carlos III, FEDER European Funds and INNEST/2021/321 (SAMUEL). The work of A.C. has been supported by the ValgrAI-Valencian Graduate School and Research Network for Artificial Intelligence and Generalitat Valenciana and Universitat Politecnica de Valencia (PAID-PD-22).The material from Norway has been collected as part of the project 'Pathology services in the Western Norway Health Region-a centre for applied digitisation' which is financed through a strategic investment from the Western Norway Health Authority. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Histopathology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Computer-aided diagnosis es_ES
dc.subject Histopathology es_ES
dc.subject Machine learning es_ES
dc.subject Melanocytic tumours es_ES
dc.subject Spitzoid tumours es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Histological interpretation of spitzoid tumours: an extensive machine learning-based concordance analysis for improving decision making es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/his.15187 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI20%2F00094/ES/ANALISIS COMBINADO POR INTELIGENCIA ARTIFICIAL DE MARCADORES EPIGENETICOS E IMAGENES MICROSCOPICAS DIGITALIZADAS DE TUMORES MELANOCITICOS AMBIGUOS PARA OPTIMIZAR SU CLASIFICACION DIAGNOSTICA Y PRONOSTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-PD-22/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Mosquera-Zamudio, A.; Launet, LM.; Colomer, A.; Wiedemeyer, K.; López-Takegami, JC.; Palma, LF.; Undersrud, E.... (2024). Histological interpretation of spitzoid tumours: an extensive machine learning-based concordance analysis for improving decision making. Histopathology. 85(1):155-170. https://doi.org/10.1111/his.15187 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/his.15187 es_ES
dc.description.upvformatpinicio 155 es_ES
dc.description.upvformatpfin 170 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 38606989 es_ES
dc.relation.pasarela S\523625 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Valencian Graduate School and Research Network of Artificial Intelligence es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem