- -

Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Ahmad, Ali es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Lorenz, Pascal es_ES
dc.date.accessioned 2024-09-06T18:15:51Z
dc.date.available 2024-09-06T18:15:51Z
dc.date.issued 2024-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207587
dc.description.abstract [EN] Turbidity is one of the crucial parameters of water quality. Even though many commercial devices, low-cost sensors, and remote sensing data can efficiently quantify turbidity, they are not valid tools for the classification it. In this paper, we design, calibrate, and test a novel optical low-cost sensor for turbidity quantification and classification. The sensor is based on an RGB light source and a light detector. The analyzed samples are characterized by turbidity values from 0.02 to 60 NTUs, and have four different sources. These samples were generated to represent natural turbidity sources and leaves in the marine areas close to agricultural lands. The data are gathered using 64 different combinations of light, generating complex matrix data. Machine learning models are compared to analyze this data, including training, validation, and test datasets. Moreover, different alternatives for data preprocessing and feature selection are assessed. Concerning the quantification of turbidity, the best results were obtained using averaged data and principal components analyses in conjunction with exponential gaussian process regression, achieving an R2 of 0.979. Regarding the classification of the turbidity, an accuracy of 91.23% is obtained with the fine K-Nearest-Neighbor classifier. The cases in which data were misclassified are characterized by turbidity values lower than 5 NTUs. The obtained results represent an improvement over the current solutions in terms of turbidity quantification and a completely novel approach to turbidity classification. es_ES
dc.description.sponsorship This study forms part of the ThinkInAzul program and was partially supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana (THINKINAZUL/2021/002), by the Conselleria de Educación, Universidades y Empleo through the Subvenciones para estancias de personal investigador doctor en centros de investigación radicados fuera de la Comunitat Valenciana (Convocatoria 2023) . Grant number CIBEST/2022/40, and by the Agencia Estatal de Investigación (AEI) , through the Ayudas para contratos predoctorales para la formación de doctores/as (Convocatoria 2021) . Grant number PRE2021-100809. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Chemosensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optical sensor es_ES
dc.subject Marine areas es_ES
dc.subject Low turbidity es_ES
dc.subject Regression model es_ES
dc.subject Multiclass classification model es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/chemosensors12030034 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIBEST%2F2022%2F40/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//THINKINAZUL%2F2021%2F002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2021-100809/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Parra, L.; Ahmad, A.; Sendra, S.; Lloret, J.; Lorenz, P. (2024). Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity. Chemosensors. 12(3). https://doi.org/10.3390/chemosensors12030034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/chemosensors12030034 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-9040 es_ES
dc.relation.pasarela S\521004 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem