Mostrar el registro sencillo del ítem
dc.contributor.author | Bogacka, Karolina | es_ES |
dc.contributor.author | Sowinski, Piotr | es_ES |
dc.contributor.author | Danilenka, Anastasiya | es_ES |
dc.contributor.author | Biot, Francisco Mahedero | es_ES |
dc.contributor.author | Wasielewska-Michniewska, Katarzyna | es_ES |
dc.contributor.author | Ganzha, Maria | es_ES |
dc.contributor.author | Paprzycki, Marcin | es_ES |
dc.contributor.author | Palau Salvador, Carlos Enrique | es_ES |
dc.date.accessioned | 2024-09-06T18:16:04Z | |
dc.date.available | 2024-09-06T18:16:04Z | |
dc.date.issued | 2024-05-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/207596 | |
dc.description.abstract | [EN] Currently, deploying machine learning workloads in the Cloud-Edge-IoT continuum is challenging due to the wide variety of available hardware platforms, stringent performance requirements, and the heterogeneity of the workloads themselves. To alleviate this, a novel, flexible approach for machine learning inference is introduced, which is suitable for deployment in diverse environments-including edge devices. The proposed solution has a modular design and is compatible with a wide range of user-defined machine learning pipelines. To improve energy efficiency and scalability, a high-performance communication protocol for inference is propounded, along with a scale-out mechanism based on a load balancer. The inference service plugs into the ASSIST-IoT reference architecture, thus taking advantage of its other components. The solution was evaluated in two scenarios closely emulating real-life use cases, with demanding workloads and requirements constituting several different deployment scenarios. The results from the evaluation show that the proposed software meets the high throughput and low latency of inference requirements of the use cases while effectively adapting to the available hardware. The code and documentation, in addition to the data used in the evaluation, were open-sourced to foster adoption of the solution. | es_ES |
dc.description.sponsorship | This work was funded by the European Commission, in part under the Horizon 2020 project ASSIST-IoT, grant number 957258. The work of Marcin Paprzycki and Katarzyna WasielewskaMichniewska was funded under the Horizon Europe project aerOS, grant number 101069732. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Edge computing | es_ES |
dc.subject | IoT | es_ES |
dc.subject | Cloud-edge-IoT | es_ES |
dc.subject | Inference | es_ES |
dc.subject | GRPC | es_ES |
dc.subject | Inference server | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics13101888 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/957258/EU/Architecture for Scalable, Self-*, human-centric, Intelligent, Secure, and Tactile next generation IoT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101069732/EU/Autonomous, scalablE, tRustworthy, intelligent European meta Operating System for the IoT edge-cloud continuum/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Bogacka, K.; Sowinski, P.; Danilenka, A.; Biot, FM.; Wasielewska-Michniewska, K.; Ganzha, M.; Paprzycki, M.... (2024). Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum. Electronics. 13(10). https://doi.org/10.3390/electronics13101888 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics13101888 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\522325 | es_ES |
dc.contributor.funder | European Commission | es_ES |