- -

Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bogacka, Karolina es_ES
dc.contributor.author Sowinski, Piotr es_ES
dc.contributor.author Danilenka, Anastasiya es_ES
dc.contributor.author Biot, Francisco Mahedero es_ES
dc.contributor.author Wasielewska-Michniewska, Katarzyna es_ES
dc.contributor.author Ganzha, Maria es_ES
dc.contributor.author Paprzycki, Marcin es_ES
dc.contributor.author Palau Salvador, Carlos Enrique es_ES
dc.date.accessioned 2024-09-06T18:16:04Z
dc.date.available 2024-09-06T18:16:04Z
dc.date.issued 2024-05-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207596
dc.description.abstract [EN] Currently, deploying machine learning workloads in the Cloud-Edge-IoT continuum is challenging due to the wide variety of available hardware platforms, stringent performance requirements, and the heterogeneity of the workloads themselves. To alleviate this, a novel, flexible approach for machine learning inference is introduced, which is suitable for deployment in diverse environments-including edge devices. The proposed solution has a modular design and is compatible with a wide range of user-defined machine learning pipelines. To improve energy efficiency and scalability, a high-performance communication protocol for inference is propounded, along with a scale-out mechanism based on a load balancer. The inference service plugs into the ASSIST-IoT reference architecture, thus taking advantage of its other components. The solution was evaluated in two scenarios closely emulating real-life use cases, with demanding workloads and requirements constituting several different deployment scenarios. The results from the evaluation show that the proposed software meets the high throughput and low latency of inference requirements of the use cases while effectively adapting to the available hardware. The code and documentation, in addition to the data used in the evaluation, were open-sourced to foster adoption of the solution. es_ES
dc.description.sponsorship This work was funded by the European Commission, in part under the Horizon 2020 project ASSIST-IoT, grant number 957258. The work of Marcin Paprzycki and Katarzyna WasielewskaMichniewska was funded under the Horizon Europe project aerOS, grant number 101069732. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Machine learning es_ES
dc.subject Edge computing es_ES
dc.subject IoT es_ES
dc.subject Cloud-edge-IoT es_ES
dc.subject Inference es_ES
dc.subject GRPC es_ES
dc.subject Inference server es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics13101888 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/957258/EU/Architecture for Scalable, Self-*, human-centric, Intelligent, Secure, and Tactile next generation IoT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101069732/EU/Autonomous, scalablE, tRustworthy, intelligent European meta Operating System for the IoT edge-cloud continuum/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Bogacka, K.; Sowinski, P.; Danilenka, A.; Biot, FM.; Wasielewska-Michniewska, K.; Ganzha, M.; Paprzycki, M.... (2024). Flexible Deployment of Machine Learning Inference Pipelines in the Cloud-Edge-IoT Continuum. Electronics. 13(10). https://doi.org/10.3390/electronics13101888 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics13101888 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\522325 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem