Mostrar el registro sencillo del ítem
dc.contributor.author | Botello-Marabotto, Marina Dolores | es_ES |
dc.contributor.author | Martínez-Bisbal, M.Carmen | es_ES |
dc.contributor.author | Pinazo-Duran, M. Dolores | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2024-09-06T18:16:06Z | |
dc.date.available | 2024-09-06T18:16:06Z | |
dc.date.issued | 2024-06-01 | es_ES |
dc.identifier.issn | 0039-9140 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/207599 | |
dc.description.abstract | [EN] Primary Open-Angle Glaucoma (POAG) is the most prevalent glaucoma type, and the leading cause of irreversible visual impairment and blindness worldwide. Identification of early POAG biomarkers is of enormous value, as there is not an effective treatment for the glaucomatous optic nerve degeneration (OND). In this pilot study, a metabolomic analysis, by using proton (1H) nuclear magnetic resonance (NMR) spectroscopy was conducted in tears, in order to determine the changes of specific metabolites in the initial glaucoma eyes and to discover potential diagnostic biomarkers. A classification model, based on the metabolomic fingerprint in tears was generated as a non-invasive tool to support the preclinical and clinical POAG diagnosis. 1H NMR spectra were acquired from 30 tear samples corresponding to the POAG group (n = 11) and the control group (n = 19). Data were analysed by multivariate statistics (partial least squares-discriminant analysis: PLS-DA) to determine a model capable of differentiating between groups. The whole data set was split into calibration (65%)/validation (35%), to test the performance and the ability for glaucoma discrimination. The calculated PLS-DA model showed an area under the curve (AUC) of 1, as well as a sensitivity of 100% and a specificity of 83.3% to distinguish POAG group versus control group tear data. This model included 11 metabolites, potential biomarkers of the disease. When comparing the study groups, a decrease in the tear concentration of phenylalanine, phenylacetate, leucine, n-acetylated compounds, formic acid, and uridine, was found in the POAG group. Moreover, an increase in the tear concentration of taurine, glycine, urea, glucose, and unsaturated fatty acids was observed in the POAG group. These results highlight the potential of tear metabolomics by 1H NMR spectroscopy as a non-invasive approach to support early POAG diagnosis and in order to prevent visual loss. | es_ES |
dc.description.sponsorship | This research was supported, in part by: 1) project PID2021- 126304OB-C41 funded by MCIN/AEI/10.13039/501100011033/and by European Regional Development Fund - A way of doing Europe, 2) Generalitat Valenciana (CIPROM/2021/007), 3) Universitat Politecnica de Valencia and FISABIO through the POLISABIO Research Program (PI2022_02), 4) General Sub-Directorate of Networks and Cooperative Research Centers of the Carlos III Health Institute, Spanish Ministry of Economy, Industry and Competitiveness, and by the European Program FEDER, to the Spanish Research Network of Prevention, Early Detection, Treatment and Rehabilitation of Ophthalmic Pathology (OFTARED: RD16/0008/002), 5) Spanish Ministry of Science and Innovation program Cooperative Research Networks Oriented to Health Results (RIC-ORS), to the Spanish Research Net of Inflammation and immunopathology of organs and systems REI RICORS, of the Carlos III Health Institute (RD21/0002/0032) and the European Program FEDER Next Generation EU. 6) CIBER -Consorcio Centro de Investigacion Bio-medica en Red- (CB07/01/2012), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion. U26 NMR: Biomedical Applications II platform from Nanbiosis (Research Infrastructures & Services of CIBER- BBN) is also gratefully acknowledged. Finally, M. Botello Marabotto acknowledges Spanish Government for her PhD grant (FPU20/05279). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Talanta | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | (1)H NMR spectroscopy | es_ES |
dc.subject | Biomarkers | es_ES |
dc.subject | Diagnosis | es_ES |
dc.subject | Metabolomics | es_ES |
dc.subject | Primary open angle glaucoma | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Tear metabolomics for the diagnosis of primary open-angle glaucoma | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.talanta.2024.125826 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126304OB-C41/ES/NUEVOS MATERIALES Y SONDAS PARA EL RECONOCIMIENTO, LIBERACION DE FARMACOS, NANOMOTORES Y COMUNICACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIPROM%2F2021%2F007/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//RD21%2F0002%2F0032/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//RD16%2F0008%2F002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FISABIO//PI2022_02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//FPU20%2F05279/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CB07%2F01%2F2012//Bioingeniería, biomateriales y nanomedicina/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Botello-Marabotto, MD.; Martínez-Bisbal, M.; Pinazo-Duran, MD.; Martínez-Máñez, R. (2024). Tear metabolomics for the diagnosis of primary open-angle glaucoma. Talanta. 273. https://doi.org/10.1016/j.talanta.2024.125826 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.talanta.2024.125826 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 273 | es_ES |
dc.identifier.pmid | 38479028 | es_ES |
dc.relation.pasarela | S\523070 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana | es_ES |