- -

Enhancing Cooperative Multi-Agent Systems With Self-Advice and Near-Neighbor Priority Collision Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing Cooperative Multi-Agent Systems With Self-Advice and Near-Neighbor Priority Collision Control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palacios-Morocho, Maritza Elizabeth es_ES
dc.contributor.author Inca, Saúl es_ES
dc.contributor.author Monserrat del Río, Jose Francisco es_ES
dc.date.accessioned 2024-09-06T18:16:40Z
dc.date.available 2024-09-06T18:16:40Z
dc.date.issued 2024 es_ES
dc.identifier.issn 2379-8858 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207623
dc.description.abstract [EN] The coordination of actions to be executed by multiple independent agents in a dynamic environment is one of the main challenges of multi-agent systems. To address this type of scenario, a key technology called Reinforcement Learning (RL) has emerged, which enables the training of optimal cooperative policies among agents. However, traditional value decomposition methods suffer fromunstable convergence when the number of agents increases. To address this problem, this article proposes a novel algorithm based on centralized learning that employs a self-advice module to replace the joint action, thereby reducing the algorithmic complexity. The proposed algorithm uses the Joint Action Learning (JAL) concept to find an optimal approach and a collision controller module that was designed to further mitigate the risk of collisions. A comparison of the algorithm proposed is carried out with two benchmark algorithms. The first one focuses on ecomposing the reward signal and the second one trains a different actor-critic network for each agent. Furthermore, multiple target points are defined to enhance cooperative scenarios during the learning process. According to the results, the proposed approach outperforms the two benchmarks by 8% and 49%, thus highlighting the effectiveness of the centralized learning approach in multi-agent systems. es_ES
dc.description.sponsorship Elizabeth Palacios s research was supported by the Research and Development Grants Program under Grant PAID-01-19 of the Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Intelligent Vehicles es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cooperative multi-agent system es_ES
dc.subject Reinforcement learning es_ES
dc.subject Independent learning es_ES
dc.subject Joint action learning es_ES
dc.subject K-nearest neighbors es_ES
dc.subject Deep deterministic policy gradient es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Enhancing Cooperative Multi-Agent Systems With Self-Advice and Near-Neighbor Priority Collision Control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TIV.2023.3293198 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-01-19-18//5G-SMART 5G for Smart Manufacturing/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Palacios-Morocho, ME.; Inca, S.; Monserrat Del Río, JF. (2024). Enhancing Cooperative Multi-Agent Systems With Self-Advice and Near-Neighbor Priority Collision Control. IEEE Transactions on Intelligent Vehicles. 9(1):2864-2877. https://doi.org/10.1109/TIV.2023.3293198 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TIV.2023.3293198 es_ES
dc.description.upvformatpinicio 2864 es_ES
dc.description.upvformatpfin 2877 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\509572 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
upv.costeAPC 786.5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem