- -

Intelligent Underwater Object Detection and Image Restoration for Autonomous Underwater Vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intelligent Underwater Object Detection and Image Restoration for Autonomous Underwater Vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fayaz, Sheezan es_ES
dc.contributor.author Parah, Shabir A. es_ES
dc.contributor.author Qureshi, G.J. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Del Ser, Javier es_ES
dc.contributor.author Khan Muhammad, es_ES
dc.date.accessioned 2024-09-06T18:16:48Z
dc.date.available 2024-09-06T18:16:48Z
dc.date.issued 2024-02 es_ES
dc.identifier.issn 0018-9545 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207629
dc.description.abstract [EN] Unmanned Underwater Vehicles (UUVs) have been reliable and economical technological solutions to perform undersea monitoring tasks in comparison to manned vehicles. However, in many situations, UUV is unable to fulfill complex undersea research tasks since target objects appear distorted due to light absorption and scattering. Besides, ocean surveying undergoes severe power requirements compared to terrestrial systems because of battery-driven low-storage vehicles like Unmanned Underwater Vehicles (UUVs). Therefore, limited power supply, motion resistance of water medium, and distorted target object appearance can delay the mission and reduce the efficiency of UUV in their underwater operations. Considering the resource-constrained undersea monitoring setup, we propose an intelligent two-stage framework for expeditious monitoring of underwater scenes. First, an effective deep neural network is employed for underwater object/region of interest (ROI) detection. Then the detected ROI is restored using an efficient restoration method, thereby improving the visual quality of the degraded images and aiding the navigating and monitoring tasks of UUVs. Our method has been objectively and subjectively assessed using 9 evaluation metrics and our key results reveal mAP of 94.35% and an Underwater Color Image Quality Evaluation (UCIQE) score of 3.09, surpassing state-of-the-art methods for object detection. Furthermore, the execution time of 0.550 secs is required for object detection and dehazing, making this proposal suitable for UUVs to perform automatic undersea object detection and dehazing within operational running requirements. es_ES
dc.description.sponsorship This work was supported in part by the Department of Electronics and Instrumentation Technology, funded by the Indian Government through Science and Heritage Research Initiative (SHRI) scheme under Grant DST/TDT/SHRI-33/2018. The work of J. Del Ser was supported by the Basque Government through ELKARTEK and EMAITEK funds, and in part by the Consolidated Research Group MATHMODE under Grant IT1456 22. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Vehicular Technology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dark channel es_ES
dc.subject Deep learning es_ES
dc.subject Object detection es_ES
dc.subject Image restoration es_ES
dc.subject Unmanned underwater vehicles es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Intelligent Underwater Object Detection and Image Restoration for Autonomous Underwater Vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TVT.2023.3318629 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT1456 22/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Government of India//DST%2FTDT%2FSHRI-33%2F2018/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Fayaz, S.; Parah, SA.; Qureshi, G.; Lloret, J.; Del Ser, J.; Khan Muhammad (2024). Intelligent Underwater Object Detection and Image Restoration for Autonomous Underwater Vehicles. IEEE Transactions on Vehicular Technology. 73(2):1726-1735. https://doi.org/10.1109/TVT.2023.3318629 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TVT.2023.3318629 es_ES
dc.description.upvformatpinicio 1726 es_ES
dc.description.upvformatpfin 1735 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\521796 es_ES
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Government of India es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem