- -

Forecasting wine phenolic composition from infrared spectra of grapes extracts and monitoring of fermentations with optimised time-specific prediction models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Forecasting wine phenolic composition from infrared spectra of grapes extracts and monitoring of fermentations with optimised time-specific prediction models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lambrecht, Kiera es_ES
dc.contributor.author Fonseca Diaz, Valeria es_ES
dc.contributor.author Saeys, Wouter es_ES
dc.contributor.author Louw, Tobias es_ES
dc.contributor.author Du toit, Wessel es_ES
dc.contributor.author Aleixandre Tudo, José es_ES
dc.date.accessioned 2024-09-09T18:09:34Z
dc.date.available 2024-09-09T18:09:34Z
dc.date.issued 2024-05-15 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207819
dc.description.abstract [EN] Incorporating monitoring and forecasting technologies has the potential to enhance the different aspects of winemaking. By monitoring certain chemical parameters, it is possible to evaluate the progress of the fermentation and phenolic extraction, while also detecting deviations from expected behaviour. This study aims to investigate the development of a rapid forecasting method and different strategies to improve the accuracy of process monitoring. The first part involves the introduction of partial least squares (PLS) calibration models able to forecast the trajectories of phenolic extraction during fermentation using grape extract spectra. Additionally, novel methods for reoptimizing calibration models are proposed, with the intention of increasing the prediction accuracy. Whilst this method is transferable to PLS models, principal component regression (PCR) models were used instead as a more simplistic way to test the new methods. First, dynamic PCR linear regression coefficients were adapted over time to capture the compound evolution in the wine matrix. Secondly, PCR calibration models were reoptimized using interpolated spectral and reference data. The forecasting PLS calibration models have shown promising results for total anthocyanin content (mg/L), colour density, polymeric pigments (mg/L), MCP tannins (mg/L), and total phenolic index with overall R2 values on the validation set above 0.6, and low RSMEV values. Using interpolated data to re-optimise models was found to be more effective than global models or those using the calculated regression coefficients methods for predicting the concentration of a particular compound at a certain time point. While R2 values are suboptimal for all considered PCR models, in 72% of the cases analysed, the interpolation method for re-optimisation showed RMSEV values between 6% and 83% lower than those reported for a more traditional PCR model and other re-optimisation strategies. Interpolated models have shown consistency in predicting values, along with good performance metrics, indicating that they could be applied to samples for which calibration models do not exist. es_ES
dc.description.sponsorship The authors want to gratefully acknowledge Winetech SA (WW JT 19-02) and the Spanish Ministry of Science, Innovation and Universities for the financial support received under the Beatriz Galindo program (BG20/00021) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject IR spectroscopy es_ES
dc.subject Phenolic compounds es_ES
dc.subject Forecasting es_ES
dc.subject Chemometrics es_ES
dc.subject Principal component regression es_ES
dc.subject Partial least squares es_ES
dc.title Forecasting wine phenolic composition from infrared spectra of grapes extracts and monitoring of fermentations with optimised time-specific prediction models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2024.105114 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//BG20%2F00021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Winetech South Africa//WW JT 19-02/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Lambrecht, K.; Fonseca Diaz, V.; Saeys, W.; Louw, T.; Du Toit, W.; Aleixandre Tudo, J. (2024). Forecasting wine phenolic composition from infrared spectra of grapes extracts and monitoring of fermentations with optimised time-specific prediction models. Chemometrics and Intelligent Laboratory Systems. 248. https://doi.org/10.1016/j.chemolab.2024.105114 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2024.105114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 248 es_ES
dc.relation.pasarela S\523046 es_ES
dc.contributor.funder Winetech South Africa es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem