Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera, Erika M. | es_ES |
dc.contributor.author | Calvet, Laura | es_ES |
dc.contributor.author | Ghorbani, Elnaz | es_ES |
dc.contributor.author | Panadero, Javier | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2024-09-24T18:06:28Z | |
dc.date.available | 2024-09-24T18:06:28Z | |
dc.date.issued | 2023-02 | es_ES |
dc.identifier.issn | 2073-431X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/208623 | |
dc.description.abstract | [EN] Carsharing practices are spreading across many cities in the world. This paper analyzes real-life data obtained from a private carsharing company operating in the city of Barcelona, Spain. After describing the main trends in the data, machine learning and time-series analysis methods are employed to better understand citizens' needs and behavior, as well as to make predictions about the evolution of their demand for this service. In addition, an original proposal is made regarding the location of the pick-up points. This proposal is based on a capacitated dispersion algorithm, and aims at balancing two relevant factors, including scattering of pick-up points (so that most users can benefit from the service) and efficiency (so that areas with higher demand are well covered). Our aim is to gain a deeper understanding of citizens' needs and behavior in relation to carsharing services. The analysis includes three main components: descriptive, predictive, and prescriptive, resulting in customer segmentation and forecast of service demand, as well as original concepts for optimizing parking station location. | es_ES |
dc.description.sponsorship | This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21 /AEI/ 10.13039/501100011033), as well as by the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Computers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Carsharing | es_ES |
dc.subject | Data analytics | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Intelligent algorithms | es_ES |
dc.subject | Smart cities | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Enhancing Carsharing Experiences for Barcelona Citizens with Data Analytics and Intelligent Algorithms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/computers12020033 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//21S09355-001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Herrera, EM.; Calvet, L.; Ghorbani, E.; Panadero, J.; Juan, AA. (2023). Enhancing Carsharing Experiences for Barcelona Citizens with Data Analytics and Intelligent Algorithms. Computers. 12(2). https://doi.org/10.3390/computers12020033 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/computers12020033 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\509504 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |