Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning

Reconocimiento - No comercial - Compartir igual (by-nc-sa)Reconocimiento - No comercial - Compartir igual (by-nc-sa)Reconocimiento - No comercial - Compartir igual (by-nc-sa)

Autores

Caliskan, Ufuk
Pappagallo, Angela
Ortame, Francesco
Bruno, Mauro
Pugliese, Francesco

Directores

Unidades organizativas

Handle

https://riunet.upv.es/handle/10251/208677

Cita bibliográfica

Caliskan, U.; Pappagallo, A.; Ortame, F.; Bruno, M.; Pugliese, F. (2024). Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning. En 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024). Editorial Universitat Politècnica de València. 26-33. https://doi.org/10.4995/CARMA2024.2024.17823

Titulación

Resumen

[EN] Over the past decade, social media platforms have undergone significant and rapid expansion. One of the key challenges has been effectively analysing the vast amount of unstructured user-generated data they produce. This research delves into the analysis of Italian Twitter data through the application of advanced deep learning models across three primary objectives: text classification, sentiment analysis, and hate analysis. Five cutting-edge models are evaluated, each utilizing distinct word embeddings.Furthermore, this study investigates the effects of processing emojis and emoticons in Italian tweets on sentiment and hate analysis. We compare model performances and suggest optimized approaches for each task. Finally, we apply these methodologies to real-world Twitter data and present our findings through multiple graphs and statistical analyses. This study demonstrates the possibility of extracting new insights and novel information from unstructured textual Big Data in Politics.

Palabras clave

Politics, Deep learning, Artificial intelligence, Big data, Statistics, Sentiment

ISSN

ISBN

9788413962016

Fuente

6th International Conference on Advanced Research Methods and Analytics (CARMA 2024)

DOI

10.4995/CARMA2024.2024.17823

Editorial

Editorial Universitat Politècnica de València

Versión del editor

http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17823

dc.description.uri