- -

Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-Antuñano, Ignacio es_ES
dc.contributor.author Barros-González, Brais es_ES
dc.contributor.author Martínez-Sánchez, Joaquin es_ES
dc.contributor.author Riveiro, Belén es_ES
dc.date.accessioned 2024-09-27T18:08:38Z
dc.date.available 2024-09-27T18:08:38Z
dc.date.issued 2024-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/208943
dc.description.abstract [EN] In our contemporary cities, infrastructures face a diverse range of risks, including those caused by climatic events. The availability of monitoring technologies such as remote sensing has opened up new possibilities to address or mitigate these risks. Satellite images allow the analysis of terrain over time, fostering probabilistic models to support the adoption of data-driven urban planning. This study focuses on the exploration of various satellite data sources, including nighttime land surface temperature (LST) from Landsat-8, as well as ground motion data derived from techniques such as MT-InSAR, Sentinel-1, and the proximity of urban infrastructure to water. Using information from the Local Climate Zones (LCZs) and the current land use of each building in the study area, the economic and climatic implications of any changes in the current features of the soil are evaluated. Through the construction of a Bayesian Network model, synthetic datasets are generated to identify areas and quantify risk in Barcelona. The results of this model were also compared with a Multiple Linear Regression model, concluding that the use of the Bayesian Network model provides crucial information for urban managers. It enables adopting proactive measures to reduce negative impacts on infrastructures by reducing or eliminating possible urban disparities. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Science and Innovation through the PONT3 project Ref. PID2021-124236OB-C33 and through the grant PRE2019-087331 for the training of predoctoral researchers. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Infrastructures es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bayesian network model es_ES
dc.subject Nighttime land surface temperature es_ES
dc.subject Multiple linear regression model es_ES
dc.subject Mt-InSAR es_ES
dc.subject Multispectral and radar satellite images es_ES
dc.subject Local climate zones es_ES
dc.subject Ground motion es_ES
dc.subject Urban resilience es_ES
dc.title Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/infrastructures9070107 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124236OB-C33/ES/ENFOQUE INTERDISCIPLINAR EFICIENTE PARA ANTICIPAR LA PROPAGACION DE FALLOS EN PUENTES QUE SOBREPASAN SU VIDA UTIL: COMPUTACION SURROGADA Y BASADA EN DATOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2019-087331/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rodríguez-Antuñano, I.; Barros-González, B.; Martínez-Sánchez, J.; Riveiro, B. (2024). Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning. Infrastructures. 9(7). https://doi.org/10.3390/infrastructures9070107 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/infrastructures9070107 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2412-3811 es_ES
dc.relation.pasarela S\525274 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem