Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez-Antuñano, Ignacio | es_ES |
dc.contributor.author | Barros-González, Brais | es_ES |
dc.contributor.author | Martínez-Sánchez, Joaquin | es_ES |
dc.contributor.author | Riveiro, Belén | es_ES |
dc.date.accessioned | 2024-09-27T18:08:38Z | |
dc.date.available | 2024-09-27T18:08:38Z | |
dc.date.issued | 2024-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/208943 | |
dc.description.abstract | [EN] In our contemporary cities, infrastructures face a diverse range of risks, including those caused by climatic events. The availability of monitoring technologies such as remote sensing has opened up new possibilities to address or mitigate these risks. Satellite images allow the analysis of terrain over time, fostering probabilistic models to support the adoption of data-driven urban planning. This study focuses on the exploration of various satellite data sources, including nighttime land surface temperature (LST) from Landsat-8, as well as ground motion data derived from techniques such as MT-InSAR, Sentinel-1, and the proximity of urban infrastructure to water. Using information from the Local Climate Zones (LCZs) and the current land use of each building in the study area, the economic and climatic implications of any changes in the current features of the soil are evaluated. Through the construction of a Bayesian Network model, synthetic datasets are generated to identify areas and quantify risk in Barcelona. The results of this model were also compared with a Multiple Linear Regression model, concluding that the use of the Bayesian Network model provides crucial information for urban managers. It enables adopting proactive measures to reduce negative impacts on infrastructures by reducing or eliminating possible urban disparities. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish Ministry of Science and Innovation through the PONT3 project Ref. PID2021-124236OB-C33 and through the grant PRE2019-087331 for the training of predoctoral researchers. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Infrastructures | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bayesian network model | es_ES |
dc.subject | Nighttime land surface temperature | es_ES |
dc.subject | Multiple linear regression model | es_ES |
dc.subject | Mt-InSAR | es_ES |
dc.subject | Multispectral and radar satellite images | es_ES |
dc.subject | Local climate zones | es_ES |
dc.subject | Ground motion | es_ES |
dc.subject | Urban resilience | es_ES |
dc.title | Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/infrastructures9070107 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124236OB-C33/ES/ENFOQUE INTERDISCIPLINAR EFICIENTE PARA ANTICIPAR LA PROPAGACION DE FALLOS EN PUENTES QUE SOBREPASAN SU VIDA UTIL: COMPUTACION SURROGADA Y BASADA EN DATOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2019-087331/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Rodríguez-Antuñano, I.; Barros-González, B.; Martínez-Sánchez, J.; Riveiro, B. (2024). Urban Infrastructure Vulnerability to Climate-Induced Risks: A Probabilistic Modeling Approach Using Remote Sensing as a Tool in Urban Planning. Infrastructures. 9(7). https://doi.org/10.3390/infrastructures9070107 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/infrastructures9070107 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2412-3811 | es_ES |
dc.relation.pasarela | S\525274 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |