- -

Artificial Punishment Signals for Guiding the Decision-Making Process of an Autonomous System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial Punishment Signals for Guiding the Decision-Making Process of an Autonomous System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrera-Paniagua, Daniel es_ES
dc.contributor.author Rubilar-Torrealba, Rolando es_ES
dc.contributor.author Castro, Nelson es_ES
dc.contributor.author Taverner-Aparicio, Joaquín José es_ES
dc.date.accessioned 2024-09-30T18:03:36Z
dc.date.available 2024-09-30T18:03:36Z
dc.date.issued 2024-08-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209036
dc.description.abstract [EN] Somatic markers have been evidenced as determinant factors in human behavior. In particular, the concepts of somatic reward and punishment have been related to the decision-making process; both reward and somatic punishment represent bodily states with positive or negative sensations, respectively. In this research work, we have designed a mechanism to generate artificial somatic punishments in an autonomous system. An autonomous system is understood as a system capable of performing autonomous behavior and decision making. We incorporated this mechanism within a decision model oriented to support decision making on stock markets. Our model focuses on using artificial somatic punishments as a tool to guide the decisions of an autonomous system. To validate our proposal, we defined an experimental scenario using official data from Standard & Poor's 500 and the Dow Jones index, in which we evaluated the decisions made by the autonomous system based on artificial somatic punishments in a general investment process using 10,000 independent iterations. In the investment process, the autonomous system applied an active investment strategy combined with an artificial somatic index. The results show that this autonomous system presented a higher level of investment decision effectiveness, understood as the achievement of greater wealth over time, as measured by profitability, utility, and Sharpe Ratio indicators, relative to an industry benchmark. es_ES
dc.description.sponsorship This research was funded by ANID Chile through FONDECYT INICIACION project no. 11190370, Generalitat Valenciana CIPROM/2021/077 and the Spanish Government by project ID TED2021-131295B-C32. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial punishment signals es_ES
dc.subject Autonomous system es_ES
dc.subject Decision making es_ES
dc.subject Investment decision es_ES
dc.title Artificial Punishment Signals for Guiding the Decision-Making Process of an Autonomous System es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app14177595 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11190370/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIPROM%2F2021%2F077 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-131295B-C32/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cabrera-Paniagua, D.; Rubilar-Torrealba, R.; Castro, N.; Taverner-Aparicio, JJ. (2024). Artificial Punishment Signals for Guiding the Decision-Making Process of an Autonomous System. Applied Sciences. 14(17). https://doi.org/10.3390/app14177595 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app14177595 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\527122 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem