- -

Natural language processing of social network data for the evaluation of agricultural and rural policies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Natural language processing of social network data for the evaluation of agricultural and rural policies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez Domínguez, Alba es_ES
dc.contributor.author Roig-Tierno, Norat es_ES
dc.contributor.author Chaparro-Banegas, Nuria es_ES
dc.contributor.author García Alvarez-Coque, José María es_ES
dc.date.accessioned 2024-10-01T18:05:54Z
dc.date.available 2024-10-01T18:05:54Z
dc.date.issued 2024-07 es_ES
dc.identifier.issn 0743-0167 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209093
dc.description.abstract [EN] Global sustainable development challenges affect the agricultural sector, and many innovations aimed at addressing these challenges have been introduced in the agri-food sector. In this complex context, new agricultural policies are being implemented in Europe. Their success depends on their potential to adapt to new realities, responding to the opinions and demands of the European population. Given the rapid rise of social media as an important part of people's daily lives, public administrations have introduced digitalization and communication strategies through social media sites. Social media can provide policymakers with large amounts of data on user opinions. Given the value of social media as a rich source of data on public views and opinions, the aim of this paper is twofold: (i) to use natural language processing (NLP) to identify the events that have led to negative or positive opinion about European Common Agricultural Policy (CAP) reform and (ii) to evaluate the ability of NLP to study users' opinions on Twitter/X. The findings show that issues such as Brexit, the European Green Deal, the role of CAP in the environment, livestock farming, food safety, and illegal practices and corruption in the distribution of CAP funds have crucial implications for the design and application of the new CAP. Moreover, the study also suggests that NLP techniques can provide opportunities to integrate agricultural policies and instruments in the agri-food sector by assessing society's opinions. Sentiment analysis, even considering its limitations, could support sound and inclusive policymaking approaches anticipating public opinion in cases of risk of social unrest. es_ES
dc.description.sponsorship This work was supported by the Vice-rectorate for Research of the Universitat Politecnica de Valencia (PAID-11-23). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Rural Studies es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sentiment analysis es_ES
dc.subject Natural language processing es_ES
dc.subject Social media es_ES
dc.subject Twitter es_ES
dc.subject Agricultural policy es_ES
dc.subject Common agricultural policy es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.title Natural language processing of social network data for the evaluation of agricultural and rural policies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jrurstud.2024.103341 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-11-23/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Gutiérrez Domínguez, A.; Roig-Tierno, N.; Chaparro-Banegas, N.; García Alvarez-Coque, JM. (2024). Natural language processing of social network data for the evaluation of agricultural and rural policies. Journal of Rural Studies. 109. https://doi.org/10.1016/j.jrurstud.2024.103341 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jrurstud.2024.103341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.relation.pasarela S\525442 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem