- -

Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Pastor, José V. es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Golke, Diego es_ES
dc.date.accessioned 2024-10-02T18:02:50Z
dc.date.available 2024-10-02T18:02:50Z
dc.date.issued 2024-09-01 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209169
dc.description.abstract [EN] The battery electric vehicle is the leading technology for reducing greenhouse gas emissions using clean and renewable energy. However, concerns due to battery thermal runaway are becoming more severe as the battery energy density increases. Fast-calculation models capable of predicting the heat released during the thermal runaway phenomenon can help to develop safety mechanisms according to the battery chemistry. The current study assesses the battery thermal runaway variability for two different battery chemistries, nickel cobalt aluminium oxides and nickel manganese cobalt oxides, for 3 different states of charge (100%, 80% and 50%), two different battery sizes (18,650 and 21,700), and two different battery health (pristine and aged). The tests are performed in the accelerating rate calorimeter using the heat-wait-seek protocol and repeated 5 times (each battery condition) for statistical analysis of the main thermal runaway parameters. A model using the Arrhenius equation was developed, calibrated, and validated. The model was developed considering 5 steps during temperature evolution to the reliable prediction of thermal runaway characteristics, considering inputs as states of charge, capacity fade (solid electrolyte interface growth), energy density, battery end mass and initial voltage. The experimental tests show that temperature rise rate, when the exothermic is detected, and battery end mass play an important role in the self-heating duration and maximum temperature, respectively, which are key parameters to understanding scattering behaviour. Considering these effects during modelling, the model can forecast the primary features of a thermal runaway, including maximum temperature, onset temperature, and duration of the whole battery thermal runaway process, all within the average difference of no more than 3%. For this reason, the model proposed seems to be a suitable tool for battery safety mechanism design as it considers the state of charge, energy density and ageing effects. es_ES
dc.description.sponsorship The authors acknowledge the Vicerrectorado de investigacion de la Universitat Politecnica de Valencia for supporting this research through Programa de Ayudas de Investigacion y desarrollo (PAID-01-22). This research is part of the projects TED2021-132220B-C21 and TED2021-130488 A-I00, funded by the MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR. This research is part of the project PID2021-124696OB-C21, funded by Ministerio de Ciencia e Innovacion, Agencia Estatal de Investigacion and FEDER (MCIN/AEI/1 0.13039/501100011033/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Thermal abuse es_ES
dc.subject Cell-to-cell dispersion es_ES
dc.subject Battery degradation es_ES
dc.subject 0D modelling es_ES
dc.subject Energy density es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2024.123571 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124696OB-C21/ES/GEMELO DIGITAL DE VEHICULO ELECTRICO INCLUYENDO UN MODELO DE ESTADO DE SALUD DE LA BATERIA (CLEAN-BREATHE)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-132220B-C21//GENERACION DE MODELOS COMPUTACIONALES PARA PREDICCION DE ENVEJECIMIENTO Y ESTABILIDAD TERMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIVERSIDAD POLITECNICA DE VALENCIA//PAID-01-22//Multidisciplinary assessment of different methods for suppressing the thermal runaway propagation in lithium-ion batteries/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130488A-I00//CARACTERIZACION FISICO-QUIMICA Y MODELADO DEL PROCESO DE VENTEO DURANTE EL FENOMENO DE FUGA TERMICA EN BATERIAS DE VEHICULOS ELECTRICOS/ es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2026-09-01 es_ES
dc.description.bibliographicCitation García Martínez, A.; Pastor, JV.; Monsalve-Serrano, J.; Golke, D. (2024). Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811. Applied Energy. 369. https://doi.org/10.1016/j.apenergy.2024.123571 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2024.123571 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 369 es_ES
dc.relation.pasarela S\519501 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem