- -

FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pfaller, Martin R es_ES
dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Schwarz, Erica L es_ES
dc.contributor.author Gerosa, Fannie M. es_ES
dc.contributor.author Szafron, Jason es_ES
dc.contributor.author Humphrey, Jay D. es_ES
dc.contributor.author Marsden, Alison L. es_ES
dc.date.accessioned 2024-10-03T18:25:23Z
dc.date.available 2024-10-03T18:25:23Z
dc.date.issued 2024-11-01 es_ES
dc.identifier.issn 0045-7825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209257
dc.description.abstract [EN] Equilibrated fluid-solid-growth (FSGe) is a fast, open source, three-dimensional (3D) computa- tional platform for simulating interactions between instantaneous hemodynamics and long-term vessel wall adaptation through mechanobiologically equilibrated growth and remodeling (G&R). Such models can capture evolving geometry, composition, and material properties in health and disease and following clinical interventions. In traditional G&R models, this feedback is modeled through highly simplified fluid solutions, neglecting local variations in blood pressure and wall shear stress (WSS). FSGe overcomes these inherent limitations by strongly coupling the 3D Navier-Stokes equations for blood flow with a 3D equilibrated constrained mixture model (CMMe) for vascular tissue G&R. CMMe allows one to predict long-term evolved mechanobiological equilibria from an original homeostatic state at a computational cost equivalent to that of a standard hyperelastic material model. In illustrative computational examples, we focus on the development of a stable aortic aneurysm in a mouse model to highlight key differences in growth patterns between FSGe and solid-only G&R models. We show that FSGe is especially important in blood vessels with asymmetric stimuli. Simulation results reveal greater local variation in fluid-derived WSS than in intramural stress (IMS). Thus, differences between FSGe and G&R models became more pronounced with the growing influence of WSS relative to pressure. Future applications in highly localized disease processes, such as for lesion formation in atherosclerosis, can now include spatial and temporal variations of WSS. es_ES
dc.description.sponsorship This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Numbers K99HL161313, R01HL139796, and R01HL159954, the Stanford Maternal and Child Health Research Institute, and the Additional Ventures Foundation Cures Collaborative. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods in Applied Mechanics and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Growth and remodeling es_ES
dc.subject Constrained mixture theory es_ES
dc.subject Finite elements es_ES
dc.subject Fluid-structure interaction es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject Cardiovascular es_ES
dc.title FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cma.2024.117259 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL_HEART,_LUNG,_AND_BLOOD_INSTITUTE/1K99HL161313-01A1/US/Computational Stability Analysis to Predict Heart Failure after Myocardial Infarction/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL_HEART,_LUNG,_AND_BLOOD_INSTITUTE/1R01HL139796-01/US/Improving Tissue Engineered Vascular Graft Performance via Computational Modeling/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL_HEART,_LUNG,_AND_BLOOD_INSTITUTE/1R01HL159954-01A1/US/Computational model-driven design to mitigate vein graft failure after coronary artery bypass/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Pfaller, MR.; Latorre, M.; Schwarz, EL.; Gerosa, FM.; Szafron, J.; Humphrey, JD.; Marsden, AL. (2024). FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method. Computer Methods in Applied Mechanics and Engineering. 431. https://doi.org/10.1016/j.cma.2024.117259 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cma.2024.117259 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 431 es_ES
dc.relation.pasarela S\526058 es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Women and Children's Health Research Institute es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem