Mostrar el registro sencillo del ítem
dc.contributor.author | Ortiz-Barrios, Miguel Angel | es_ES |
dc.contributor.author | Ishizaka, Alessio | es_ES |
dc.contributor.author | Barbati, Maria | es_ES |
dc.contributor.author | Arias-Fonseca, Sebastian | es_ES |
dc.contributor.author | Khan, Jehangir | es_ES |
dc.contributor.author | Gul, Muhammet | es_ES |
dc.contributor.author | Yucesan, Melih | es_ES |
dc.contributor.author | Alfaro Saiz, Juan José | es_ES |
dc.contributor.author | Pérez-Aguilar, Armando | es_ES |
dc.date.accessioned | 2024-10-03T18:26:07Z | |
dc.date.available | 2024-10-03T18:26:07Z | |
dc.date.issued | 2024-08 | es_ES |
dc.identifier.issn | 0360-8352 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209264 | |
dc.description.abstract | [EN] Seasonal Respiratory Diseases (SRDs) usually produce a heightened number of Emergency Department (ED) attendances due to their rapid dissemination within the community and the ineffective prevention measures. Such a context requires effective management of the emergency care processes to provide in-time diagnosis and treatment to infected patients. Nonetheless, EDs have evidenced severe operational deficiencies during these periods, thereby provoking extended bed waiting times in Hospitalization Departments (HDs). Therefore, this paper presents a hybrid approach merging Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to shorten the bed waiting times in HDs considering patient records collated in the first emergency care stages. First, we implemented Random Forest (RF) to estimate the probability of respiratory worsening based on sociodemographic and clinical patient data. Second, we inserted these probabilities into a DES model mimicking the emergency care from the admission to the HD. We then pretested different HD configurations and strategies seeking to reduce the HD bed waiting time. A case study of a European hospital group was used to validate the suggested framework. The AI-DES model enabled decision-makers to identify an improvement proposal with hospitalization bed waiting time lessening, oscillating between 7.93 and 7.98 h. | es_ES |
dc.description.sponsorship | This work was supported by the European Union Next Generation EU under the Margarita Salas grant launched by Universitat Politecnica de Valencia (Recovery, Transformation, and Resilience Plan) and Ministerio de Ciencia, Innovaciónn y Universidades (Program for Retraining of the Spanish University System 2021-2023). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Industrial Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Discrete-Event Simulation (DES) | es_ES |
dc.subject | Artificial Intelligence (AI) | es_ES |
dc.subject | Random Forest (RF) | es_ES |
dc.subject | Hospitalization Departments (HDs) | es_ES |
dc.subject | Seasonal Respiratory Diseases (SRDs) | es_ES |
dc.subject | Bed Waiting Time | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cie.2024.110405 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Ortiz-Barrios, MA.; Ishizaka, A.; Barbati, M.; Arias-Fonseca, S.; Khan, J.; Gul, M.; Yucesan, M.... (2024). Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons. Computers & Industrial Engineering. 194. https://doi.org/10.1016/j.cie.2024.110405 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cie.2024.110405 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 194 | es_ES |
dc.relation.pasarela | S\525484 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |