- -

Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mehrabankar, Somayeh es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Almudéver, Carmen G. es_ES
dc.contributor.author Pérez, Armando es_ES
dc.date.accessioned 2024-10-03T18:26:42Z
dc.date.available 2024-10-03T18:26:42Z
dc.date.issued 2024-08-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209282
dc.description.abstract [EN] We investigate the Ising and Heisenberg models using the block renormalization group method (BRGM), focusing on its behavior across different system sizes. The BRGM reduces the number of spins by a factor of 1/2 (1/3) for the Ising (Heisenberg) model, effectively preserving essential physical features of the model while using only a fraction of the spins. Through a comparative analysis, we demonstrate that as the system size increases, there is an exponential convergence between results obtained from the original and renormalized Ising Hamiltonians, provided the coupling constants are redefined accordingly. Remarkably, for a spin chain with 24 spins, all physical features, including magnetization, correlation function, and entanglement entropy, exhibit an exact correspondence with the results from the original Hamiltonian. The study of the Heisenberg model also shows this tendency, although complete convergence may appear for a size much larger than 24 spins, and is therefore beyond our computational capabilities. The success of BRGM in accurately characterizing the Ising model, even with a relatively small number of spins, underscores its robustness and utility in studying complex physical systems, and facilitates its simulation on current NISQ computers, where the available number of qubits is largely constrained. es_ES
dc.description.sponsorship The authors would like to acknowledge the enlightening discussions with German Sierra and express their gratitude to Ali Najafi (www.linkedin.com/in/ali-najafi-84345546) for his collaboration in numerical calculations. These calculations were performed using the Luis Vives machine at the University of Valencia, Spain. The authors gratefully acknowledge the computer resources at Artemisa, funded by the European Union ERDF and Comunitat Valenciana, as well as the technical support provided by the Instituto de Fisica Corpuscular, IFIC (CSIC-UV). This work has been funded by the Spanish MCIN/AEI/10.13039/501100011033 Grant PID2020-113334GB-I00, Generalitat Valenciana Grant CIPROM/2022/66, the Ministry of Economic Affairs and Digital Transformation of the Spanish Government through the QUANTUM ENIA project call-QUANTUM SPAIN project, and by the European Union through the Recovery, Transformation, and Resilience Plan: NextGenerationEU within the framework of the Digital Spain 2026 Agenda, and by the CSIC Interdisciplinary Thematic Platform (PTI+) on Quantum Technologies (PTI-QTEP+). This project has also received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement 101086123-CaLIGOLA. M A G-M acknowledges funding from the Spanish Ministry of Education and Professional Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203), QuantERA II Cofund 2021 PCI2022-133004, Projects of MCIN with funding from European Union Next GenerationEU (PRTR-C17.I1) and by Generalitat Valenciana, with reference 20220883 (PerovsQuTe) and COMCUANTICA/007 (QuanTwin), and Red Tematica RED2022-134391-T. CGA acknowledges support from the Spanish Ministry of Science, Innovation and Universities through the Beatriz Galindo program 2020 (BG20-00023) and the European ERDF under Grant PID2021-123627OB-C51 and from the QuantERA Grant EQUIP with the Grant Numbers PCI2022-133004, funded by Agencia Estatal de Investigacion, Ministerio de Ciencia e Innovacion, Gobierno de Espana, MCIN/AEI/10.13039/501100011033, and by the European Union 'NextGenerationEU/PRTR' es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof New Journal of Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Block Renormalization Group Method (BRGM) es_ES
dc.subject Ising model es_ES
dc.subject Quantum simulation es_ES
dc.subject NISQ computers es_ES
dc.subject Heisenberg model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/ad6d84 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113334GB-I00/ES/PARTICULAS ELEMENTALES: EL MODELO ESTANDAR Y SUS EXTENSIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PCI2022-133004/ES/ERROR CORRECTION FOR QUANTUM INFORMATION PROCESSING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123627OB-C51/ES/MEJORA DEL PROCESADOR, SUBSISTEMA DE MEMORIA, ACELERADORES Y REDES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101086123/EU/Cartan geometry, Lie and representation theory, Integrable Systems, quantum Groups and quantum computing towards the understanding of the geometry of deep Learning and its Applications/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIPROM%2F2022%2F66/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//20220883/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//COMCUANTICA%2F007/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//RED2022-134391-T/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//BEAGAL18%2F00203//AYUDA BEATRIZ GALINDO MODALIDAD JUNIOR-GARCIA MARCH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//BG20-00023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Mehrabankar, S.; Garcia March, MA.; Almudéver, CG.; Pérez, A. (2024). Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians. New Journal of Physics. 26(8). https://doi.org/10.1088/1367-2630/ad6d84 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1367-2630/ad6d84 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1367-2630 es_ES
dc.relation.pasarela S\525499 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem