- -

Experimental COP optimization procedure in an air-based reverse Brayton cycle for cryogenic applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental COP optimization procedure in an air-based reverse Brayton cycle for cryogenic applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Gómez-Vilanova, Alejandro es_ES
dc.contributor.author López-Carrillo, Juan Antonio es_ES
dc.date.accessioned 2024-10-04T18:05:58Z
dc.date.available 2024-10-04T18:05:58Z
dc.date.issued 2024-10-15 es_ES
dc.identifier.issn 1359-4311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209351
dc.description.abstract [EN] Sustainable and efficient refrigerants are essential due to increasing regulatory constraints on traditional highGWP refrigerants. This study investigates the potential of natural refrigerants, specifically air, in Reverse Brayton Cycles (RBC) for low-temperature applications. Unlike carbon dioxide and ammonia, which pose limitations and safety concerns below - 40 degrees C, air offers a safer and more versatile solution due to its excellent thermodynamic properties and availability. An experimental RBC was constructed using automotive components like centrifugal compressors, a radial turbine, and inter-coolers. These cost-effective and accessible components shift the refrigeration paradigm. The RBC was tested to optimize the Coefficient of Performance (COP) at - 100 degrees C C while dissipating 2 kW, a typical scenario for whole-body cryotherapy (WBC). Key control parameters included the pressure ratio of the centrifugal compressors and the position of the stator vanes in the variable geometry turbine (VGT). The optimization process resulted in a COP increase of up to 28%. Additionally, a 1D gas-dynamic model validated these results, suggesting that different component selections could enhance performance by 17 % compared to the experimental optimum point. Air-based RBC systems using automotive components can effectively achieve temperatures below - 40 degrees C, offering a viable, eco-friendly alternative to traditional refrigerants. This advancement addresses regulatory challenges and contributes to the scientific community by providing a sustainable refrigeration solution using commercially available components and demonstrating improvements through experimental data. es_ES
dc.description.sponsorship The authors want to acknowledge the institution "Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana"and its grant program "Subvenciones para la contratacion de personal investigador de caracter predoctoral"for doctoral studies (CIACIF/2021/404) funded by The European Union; also the institution "Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia" for the funding provided by the research project (PAID-11-22) ". This research has been supported by Grant CIPROM/2021/061 funded by Generalitat Valenciana, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Thermal Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Air cycle es_ES
dc.subject Experimentation es_ES
dc.subject Modeling es_ES
dc.subject Radial turbine es_ES
dc.subject Reverse Brayton cycle es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Experimental COP optimization procedure in an air-based reverse Brayton cycle for cryogenic applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.applthermaleng.2024.123946 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIPROM%2F2021%2F061//DESARROLLO DE UNA PLANTA PROPULSIVA DE OXICOMBUSTIÓN CON CAPTURA DE CO2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIACIF%2F2021%2F404//Calculation and design of radial turbomachinery for criogenic cycles with air/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-11-22/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Serrano, J.; García-Cuevas González, LM.; Gómez-Vilanova, A.; López-Carrillo, JA. (2024). Experimental COP optimization procedure in an air-based reverse Brayton cycle for cryogenic applications. Applied Thermal Engineering. 255. https://doi.org/10.1016/j.applthermaleng.2024.123946 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.applthermaleng.2024.123946 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 255 es_ES
dc.relation.pasarela S\526605 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem