- -

Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms

Show full item record

Gallego Hidalgo, V.; Lingan, J.; Freixes, A.; Juan, AA.; Osorio-Muñoz, C. (2024). Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms. Information. 15(7). https://doi.org/10.3390/info15070368

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/209464

Files in this item

Item Metadata

Title: Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms
Author: Gallego Hidalgo, Víctor Lingan, Jessica Freixes, Alfons Juan, Angel A. Osorio-Muñoz, Celia
UPV Unit: Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Issued date:
Abstract:
[EN] The integration of machine learning (ML) techniques into marketing strategies has become increasingly relevant in modern business. Utilizing scientific manuscripts indexed in the Scopus database, this article explores ...[+]
Subjects: Machine learning , Digital marketing , Algorithms , Artificial intelligence
Copyrigths: Reconocimiento (by)
Source:
Information. (eissn: 2078-2489 )
DOI: 10.3390/info15070368
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/info15070368
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/
info:eu-repo/grantAgreement/GVA//INVEST%2F2023%2F304/
info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/
Thanks:
This work was founded by the Investigo Program of the Generalitat Valenciana (INVEST/2023/304), Coca-Cola Europacific Partners, and the Spanish Ministry of Science and Innovation (PID2022-138860NB-I00 and RED2022-134703-T).[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record