- -

Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bussieweke, Fabian es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Campuzano Bolarín, Francisco es_ES
dc.date.accessioned 2024-10-07T18:07:47Z
dc.date.available 2024-10-07T18:07:47Z
dc.date.issued 2024-08 es_ES
dc.identifier.issn 0020-7543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209467
dc.description.abstract [EN] Incidents like the COVID-19 pandemic or military conflicts disrupted global supply chains, causing long-lasting shortages in multiple sectors. This so-called ripple effect denotes the propagation of disruptions to further elements of the supply chain. Due to the severity of the impact that the ripple effect has on revenues, service levels, and reputation among supply chain entities, it is essential to understand the related implications. Given the unpredictable nature of disrupting events, this study emphasises the value of a reactive development of effective recovery policies on an operational level. In this article, a system dynamics model for a supply chain is used as framework to investigate the ripple effect. Based on this model, recovery policies are generated using reinforcement learning (RL), which represents a novel approach in this context. As main findings, the experimental results demonstrate the applicability of the proposed approach in mitigating the ripple effect based on secondary data from a major aerospace and defence supply chain and furthermore, the results indicate a broad applicability of the approach without the need for complete information about the disruption characteristics and supply chain entities. With further refinement and real-world implementation, the presented approach provides the potential to enhance supply chain resilience in practice. es_ES
dc.description.sponsorship The research leading to these results received funding from the project 'Industrial Production and Logistics Optimization inIndustry 4.0' (i4OPT) (Ref. PROMETEO/2021/065) granted by the Valencian Regional Government; and the grant PDC2022-133957-I00 funded by the Spanish Ministry of Science, Innovation and Universities (MCIN/AEI /10.13039/501100011033) as part of the European Union Next Generation EU/RTRP programme. DAS:The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. The source code leading to the findings of this study is available from the corresponding author upon request. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Production Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Supply chain disruption es_ES
dc.subject Ripple effect es_ES
dc.subject System dynamics es_ES
dc.subject Reinforcement learning es_ES
dc.subject Simulation optimisation es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207543.2024.2383293 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133957-I00/ES/VALIDACION DE RESULTADOS TRANSFERIBLES DE OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Bussieweke, F.; Mula, J.; Campuzano Bolarín, F. (2024). Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach. International Journal of Production Research. https://doi.org/10.1080/00207543.2024.2383293 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207543.2024.2383293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\526421 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem