Mostrar el registro sencillo del ítem
dc.contributor.author | Bussieweke, Fabian | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Campuzano Bolarín, Francisco | es_ES |
dc.date.accessioned | 2024-10-07T18:07:47Z | |
dc.date.available | 2024-10-07T18:07:47Z | |
dc.date.issued | 2024-08 | es_ES |
dc.identifier.issn | 0020-7543 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209467 | |
dc.description.abstract | [EN] Incidents like the COVID-19 pandemic or military conflicts disrupted global supply chains, causing long-lasting shortages in multiple sectors. This so-called ripple effect denotes the propagation of disruptions to further elements of the supply chain. Due to the severity of the impact that the ripple effect has on revenues, service levels, and reputation among supply chain entities, it is essential to understand the related implications. Given the unpredictable nature of disrupting events, this study emphasises the value of a reactive development of effective recovery policies on an operational level. In this article, a system dynamics model for a supply chain is used as framework to investigate the ripple effect. Based on this model, recovery policies are generated using reinforcement learning (RL), which represents a novel approach in this context. As main findings, the experimental results demonstrate the applicability of the proposed approach in mitigating the ripple effect based on secondary data from a major aerospace and defence supply chain and furthermore, the results indicate a broad applicability of the approach without the need for complete information about the disruption characteristics and supply chain entities. With further refinement and real-world implementation, the presented approach provides the potential to enhance supply chain resilience in practice. | es_ES |
dc.description.sponsorship | The research leading to these results received funding from the project 'Industrial Production and Logistics Optimization inIndustry 4.0' (i4OPT) (Ref. PROMETEO/2021/065) granted by the Valencian Regional Government; and the grant PDC2022-133957-I00 funded by the Spanish Ministry of Science, Innovation and Universities (MCIN/AEI /10.13039/501100011033) as part of the European Union Next Generation EU/RTRP programme. DAS:The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. The source code leading to the findings of this study is available from the corresponding author upon request. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Production Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Supply chain disruption | es_ES |
dc.subject | Ripple effect | es_ES |
dc.subject | System dynamics | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Simulation optimisation | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207543.2024.2383293 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133957-I00/ES/VALIDACION DE RESULTADOS TRANSFERIBLES DE OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Bussieweke, F.; Mula, J.; Campuzano Bolarín, F. (2024). Optimisation of recovery policies in the era of supply chain disruptions: a system dynamics and reinforcement learning approach. International Journal of Production Research. https://doi.org/10.1080/00207543.2024.2383293 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207543.2024.2383293 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\526421 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |