Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Muñoz, D. | es_ES |
dc.contributor.author | García, J. | es_ES |
dc.contributor.author | Martí Albiñana, José Vicente | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2024-10-08T18:09:47Z | |
dc.date.available | 2024-10-08T18:09:47Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209525 | |
dc.description.abstract | [EN] The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure¿s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the funding received from the following research projects: Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/ 501100011033 and by ERDF A way of making Europe . Grant FPU-18/01592 funded by MCIN/AEI/10.13039/50110001 1033 and by ESF invests in your future Grant PROYECTO DI REGULAR: 039.300/2023. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Bridges | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Composite structures | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Deep learning classifier for life cycle optimization of steel concrete composite bridges | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.istruc.2023.105347 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117056RB-I00/ES/OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIENCIA E INNOVACION//FPU18%2F01592//AYUDA PREDOCTORAL FPU-MARTINEZ MUÑOZ/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Martínez-Muñoz, D.; García, J.; Martí Albiñana, JV.; Yepes, V. (2023). Deep learning classifier for life cycle optimization of steel concrete composite bridges. Structures. 57. https://doi.org/10.1016/j.istruc.2023.105347 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.istruc.2023.105347 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.identifier.eissn | 2352-0124 | es_ES |
dc.relation.pasarela | S\500663 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA E INNOVACION | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |