- -

Deep learning classifier for life cycle optimization of steel concrete composite bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep learning classifier for life cycle optimization of steel concrete composite bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Muñoz, D. es_ES
dc.contributor.author García, J. es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2024-10-08T18:09:47Z
dc.date.available 2024-10-08T18:09:47Z
dc.date.issued 2023-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209525
dc.description.abstract [EN] The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure¿s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization. es_ES
dc.description.sponsorship The authors gratefully acknowledge the funding received from the following research projects: Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/ 501100011033 and by ERDF A way of making Europe . Grant FPU-18/01592 funded by MCIN/AEI/10.13039/50110001 1033 and by ESF invests in your future Grant PROYECTO DI REGULAR: 039.300/2023. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Deep learning es_ES
dc.subject Sustainability es_ES
dc.subject Optimization es_ES
dc.subject Bridges es_ES
dc.subject Machine learning es_ES
dc.subject Composite structures es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Deep learning classifier for life cycle optimization of steel concrete composite bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.istruc.2023.105347 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117056RB-I00/ES/OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIENCIA E INNOVACION//FPU18%2F01592//AYUDA PREDOCTORAL FPU-MARTINEZ MUÑOZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Martínez-Muñoz, D.; García, J.; Martí Albiñana, JV.; Yepes, V. (2023). Deep learning classifier for life cycle optimization of steel concrete composite bridges. Structures. 57. https://doi.org/10.1016/j.istruc.2023.105347 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.istruc.2023.105347 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.identifier.eissn 2352-0124 es_ES
dc.relation.pasarela S\500663 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE CIENCIA E INNOVACION es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem