- -

SEQENS: An ensemble method for relevant gene identification in microarray data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SEQENS: An ensemble method for relevant gene identification in microarray data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Signol, François es_ES
dc.contributor.author Arnal-Benedicto, Laura es_ES
dc.contributor.author Navarro Cerdan, José Ramón es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.contributor.author Arlandis, Joaquim es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2024-10-08T18:09:50Z
dc.date.available 2024-10-08T18:09:50Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209527
dc.description.abstract [EN] This paper describes an ensemble feature identification algorithm called SEQENS, and measures its capability to identify the relevant variables in a case-control study using a genetic expression microarray dataset. SEQENS uses Sequential Feature Search on multiple sample splitting to select variables showing stronger relation with the target, and a variable relevance ranking is finally produced. Although designed for feature identification, SEQENS could also serve as a basis for feature selection (classifier optimisation). Cliff, a ranking evaluation metric is also presented and used to assess the feature identification algorithms when a groundtruth of relevant variables is available. To test performance, three types of synthetic groundtruths emulating fictitious diseases are generated from ten randomly chosen variables following different target pattern distributions using the E-MTAB-3732 dataset. Several sample-to-dimensionality ratios ranging from 300 to 3,000 observations and 854 to 54,675 variables are explored. SEQENS is compared with other feature selection or identification state-of-the-art methods. On average, the proposed algorithm identifies better the relevant genes and exhibits a stronger stability. The algorithm is available to the community. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2021/1.It was also funded by the Cervera Network of Excellence Project in Data-based Enabling Technologies (AI4ES) , co-funded by the Centre for Industrial and Technological Development, E.P.E. (CDTI) and by the European Union through the NextGenerationEU Fund, within the Cervera Aids program for Technological Centres, with the expedient number CER-20211030. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Gene identification es_ES
dc.subject Feature selection es_ES
dc.subject Ensemble method es_ES
dc.subject Microarray data es_ES
dc.subject High dimensionality spaces es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title SEQENS: An ensemble method for relevant gene identification in microarray data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2022.106413 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//IMAMCN%2F2021%2F1-ImasD//GVA2021_ImasD:Actividades de carácter no económico de la unidad de I+D para el año 2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Centro para el Desarrollo Tecnológico Industrial//CER-20211030//AI4ES - Red de Excelencia en Tecnologías Habilitadoras basadas en el Dato./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología de Informática - Institut Universitari Mixt de Tecnologia d'Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Signol, F.; Arnal-Benedicto, L.; Navarro Cerdan, JR.; Llobet Azpitarte, R.; Arlandis, J.; Perez-Cortes, J. (2023). SEQENS: An ensemble method for relevant gene identification in microarray data. Computers in Biology and Medicine. 152. https://doi.org/10.1016/j.compbiomed.2022.106413 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2022.106413 es_ES
dc.description.upvformatpinicio 106413 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 152 es_ES
dc.identifier.pmid 36521355 es_ES
dc.relation.pasarela S\478992 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem