Mostrar el registro sencillo del ítem
dc.contributor.author | Signol, François | es_ES |
dc.contributor.author | Arnal-Benedicto, Laura | es_ES |
dc.contributor.author | Navarro Cerdan, José Ramón | es_ES |
dc.contributor.author | Llobet Azpitarte, Rafael | es_ES |
dc.contributor.author | Arlandis, Joaquim | es_ES |
dc.contributor.author | Perez-Cortes, Juan-Carlos | es_ES |
dc.date.accessioned | 2024-10-08T18:09:50Z | |
dc.date.available | 2024-10-08T18:09:50Z | |
dc.date.issued | 2023-01 | es_ES |
dc.identifier.issn | 0010-4825 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209527 | |
dc.description.abstract | [EN] This paper describes an ensemble feature identification algorithm called SEQENS, and measures its capability to identify the relevant variables in a case-control study using a genetic expression microarray dataset. SEQENS uses Sequential Feature Search on multiple sample splitting to select variables showing stronger relation with the target, and a variable relevance ranking is finally produced. Although designed for feature identification, SEQENS could also serve as a basis for feature selection (classifier optimisation). Cliff, a ranking evaluation metric is also presented and used to assess the feature identification algorithms when a groundtruth of relevant variables is available. To test performance, three types of synthetic groundtruths emulating fictitious diseases are generated from ten randomly chosen variables following different target pattern distributions using the E-MTAB-3732 dataset. Several sample-to-dimensionality ratios ranging from 300 to 3,000 observations and 854 to 54,675 variables are explored. SEQENS is compared with other feature selection or identification state-of-the-art methods. On average, the proposed algorithm identifies better the relevant genes and exhibits a stronger stability. The algorithm is available to the community. | es_ES |
dc.description.sponsorship | This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2021/1.It was also funded by the Cervera Network of Excellence Project in Data-based Enabling Technologies (AI4ES) , co-funded by the Centre for Industrial and Technological Development, E.P.E. (CDTI) and by the European Union through the NextGenerationEU Fund, within the Cervera Aids program for Technological Centres, with the expedient number CER-20211030. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Biology and Medicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Gene identification | es_ES |
dc.subject | Feature selection | es_ES |
dc.subject | Ensemble method | es_ES |
dc.subject | Microarray data | es_ES |
dc.subject | High dimensionality spaces | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | SEQENS: An ensemble method for relevant gene identification in microarray data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compbiomed.2022.106413 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//IMAMCN%2F2021%2F1-ImasD//GVA2021_ImasD:Actividades de carácter no económico de la unidad de I+D para el año 2021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Centro para el Desarrollo Tecnológico Industrial//CER-20211030//AI4ES - Red de Excelencia en Tecnologías Habilitadoras basadas en el Dato./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología de Informática - Institut Universitari Mixt de Tecnologia d'Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Signol, F.; Arnal-Benedicto, L.; Navarro Cerdan, JR.; Llobet Azpitarte, R.; Arlandis, J.; Perez-Cortes, J. (2023). SEQENS: An ensemble method for relevant gene identification in microarray data. Computers in Biology and Medicine. 152. https://doi.org/10.1016/j.compbiomed.2022.106413 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2022.106413 | es_ES |
dc.description.upvformatpinicio | 106413 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 152 | es_ES |
dc.identifier.pmid | 36521355 | es_ES |
dc.relation.pasarela | S\478992 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |