- -

Backtranslate what you are saying and I will tell who you are

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Backtranslate what you are saying and I will tell who you are

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Siino, Marco es_ES
dc.contributor.author Lomonaco, Francesco es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2024-10-10T18:08:49Z
dc.date.available 2024-10-10T18:08:49Z
dc.date.issued 2024-08 es_ES
dc.identifier.issn 0266-4720 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209788
dc.description.abstract [EN] With this work, we hypothesize that semantically enriching a user's text corpus using backtranslation and expansion modules can improve performance for author profiling tasks. To perform this textual enrichment, we translate an author's representative text. Translations are made from one language-the source language-into another-the target language-and then back to the original one. Finally, we expand an author's text by integrating the original version with the back-translated one. Our framework includes these backtranslation and expansion modules followed by a SOTA classifier successfully employed for text classification. The framework is tested on three author profiling datasets from the last three years' shared tasks on fake news, hate speech, irony and stereotypes detection hosted at the CLEF conference for the PAN Lab. This work is an extension of our previous one where we just presented our main idea. Here we improve our framework, and we also investigate more languages and more datasets. Finally, a qualitative analysis is provided. The results confirm that the backtranslation and expansion add-on modules improve model performance on all three datasets evaluated. es_ES
dc.description.sponsorship European Union NextGenerationEU/PRTR, Grant/Award Number: PCI2022-135008-2; ERDF, Grant/Award Number:PID2021-124361OB-C31 es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Expert Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Author profiling es_ES
dc.subject Convolutional neural network es_ES
dc.subject Data augmentation es_ES
dc.subject Fake news es_ES
dc.subject Hate speech es_ES
dc.subject Irony es_ES
dc.subject Stereotypes es_ES
dc.subject Twitter es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Backtranslate what you are saying and I will tell who you are es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/exsy.13568 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PCI2022-135008-2/ES/MALICIOUS ACTORS PROFILING AND DETECTION IN ONLINE SOCIAL NETWORKS THROUGH ARTIFICIAL INTELLIGENCE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124361OB-C31/ES/FAIRTRANSNLP-STEREOTYPES: IDENTIFICACION DE ESTEREOTIPOS Y PREJUICIOS Y DESARROLLO DE SISTEMAS EQUITATIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Siino, M.; Lomonaco, F.; Rosso, P. (2024). Backtranslate what you are saying and I will tell who you are. Expert Systems. 41(8). https://doi.org/10.1111/exsy.13568 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/exsy.13568 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\526388 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem