Mostrar el registro sencillo del ítem
dc.contributor.author | García-Climent, Eloi | es_ES |
dc.contributor.author | Calvet, Laura | es_ES |
dc.contributor.author | Carracedo-Garnateo, Patricia | es_ES |
dc.contributor.author | Serrat, Carles | es_ES |
dc.contributor.author | Miró Martínez, Pau | es_ES |
dc.contributor.author | Peyman, Mohammad | es_ES |
dc.date.accessioned | 2024-10-10T18:09:03Z | |
dc.date.available | 2024-10-10T18:09:03Z | |
dc.date.issued | 2024-05-23 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209797 | |
dc.description.abstract | [EN] This study delves into the intricate dynamics of urban mobility, a pivotal aspect for policymakers, businesses, and communities alike. By deciphering patterns of movement within a city, stakeholders can craft targeted interventions to mitigate traffic congestion peaks, optimizing both resource allocation and individual travel routes. Focused on Barcelona, Spain, this paper draws on data sourced from the city council's open data service. Through a blend of exploratory analysis, visualization techniques, and modeling methodologies-including time series analysis and the eXtreme Gradient Boosting (XGBoost) algorithm-the research endeavors to forecast traffic conditions. Additionally, a study of variable importance is carried out, and Shapley Additive Explanations are applied to enhance the interpretability of model outputs. Findings underscore the limitations of traditional forecasting methods in capturing the nuanced spatial and temporal dependencies present in traffic flows, particularly over medium- to long-term horizons. However, the XGBoost model demonstrates robust performance, with the area under ROC curves consistently exceeding 80%, indicating its efficacy in handling non-linear traffic data variables. | es_ES |
dc.description.sponsorship | This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), as well as by the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001). The authors appreciate the support received from the research group GRBIO under the grant 2021 SGR01421 from the Departament de Recerca i Universitats de la Generalitat de Catalunya (Spain). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Traffic level | es_ES |
dc.subject | EXtreme Gradient Boosting | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Mobility | es_ES |
dc.subject | Open data | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app14114432 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C22/ES/MODELOS SOSTENIBLES Y ANALITICA DEL TRASPORTE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GC//2021 SGR01421/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//21S09355-001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | García-Climent, E.; Calvet, L.; Carracedo-Garnateo, P.; Serrat, C.; Miró Martínez, P.; Peyman, M. (2024). Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting. Applied Sciences. 14(11). https://doi.org/10.3390/app14114432 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app14114432 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\521803 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |