- -

Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Climent, Eloi es_ES
dc.contributor.author Calvet, Laura es_ES
dc.contributor.author Carracedo-Garnateo, Patricia es_ES
dc.contributor.author Serrat, Carles es_ES
dc.contributor.author Miró Martínez, Pau es_ES
dc.contributor.author Peyman, Mohammad es_ES
dc.date.accessioned 2024-10-10T18:09:03Z
dc.date.available 2024-10-10T18:09:03Z
dc.date.issued 2024-05-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/209797
dc.description.abstract [EN] This study delves into the intricate dynamics of urban mobility, a pivotal aspect for policymakers, businesses, and communities alike. By deciphering patterns of movement within a city, stakeholders can craft targeted interventions to mitigate traffic congestion peaks, optimizing both resource allocation and individual travel routes. Focused on Barcelona, Spain, this paper draws on data sourced from the city council's open data service. Through a blend of exploratory analysis, visualization techniques, and modeling methodologies-including time series analysis and the eXtreme Gradient Boosting (XGBoost) algorithm-the research endeavors to forecast traffic conditions. Additionally, a study of variable importance is carried out, and Shapley Additive Explanations are applied to enhance the interpretability of model outputs. Findings underscore the limitations of traditional forecasting methods in capturing the nuanced spatial and temporal dependencies present in traffic flows, particularly over medium- to long-term horizons. However, the XGBoost model demonstrates robust performance, with the area under ROC curves consistently exceeding 80%, indicating its efficacy in handling non-linear traffic data variables. es_ES
dc.description.sponsorship This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), as well as by the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001). The authors appreciate the support received from the research group GRBIO under the grant 2021 SGR01421 from the Departament de Recerca i Universitats de la Generalitat de Catalunya (Spain). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Traffic level es_ES
dc.subject EXtreme Gradient Boosting es_ES
dc.subject Forecasting es_ES
dc.subject Mobility es_ES
dc.subject Open data es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app14114432 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C22/ES/MODELOS SOSTENIBLES Y ANALITICA DEL TRASPORTE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GC//2021 SGR01421/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//21S09355-001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation García-Climent, E.; Calvet, L.; Carracedo-Garnateo, P.; Serrat, C.; Miró Martínez, P.; Peyman, M. (2024). Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting. Applied Sciences. 14(11). https://doi.org/10.3390/app14114432 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app14114432 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\521803 es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem