Mostrar el registro sencillo del ítem
dc.contributor.author | Pajoohesh, Homeira | es_ES |
dc.date.accessioned | 2024-10-15T08:02:52Z | |
dc.date.available | 2024-10-15T08:02:52Z | |
dc.date.issued | 2024-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/210129 | |
dc.description.abstract | [EN] If f : X → X is a function, the associated functional Alexandroff topology on X is the topology whose closed sets are {A ⊆ X : f(A) ⊆ A}. We prove that every functional Alexandroff topology is pseudopartial metrizable and every T0 functional Alexandroff topology is partial metrizable. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Functional Alexandroff topology | es_ES |
dc.subject | Partial metric | es_ES |
dc.subject | Pseudopartial metric | es_ES |
dc.title | T_0 functional Alexandroff topologies are partial metrizable | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2024.19401 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Pajoohesh, H. (2024). T_0 functional Alexandroff topologies are partial metrizable. Applied General Topology. 25(2):305-319. https://doi.org/10.4995/agt.2024.19401 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2024.19401 | es_ES |
dc.description.upvformatpinicio | 305 | es_ES |
dc.description.upvformatpfin | 319 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\19401 | es_ES |