- -

On the hyperspaces of meager and regular continua

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the hyperspaces of meager and regular continua

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Camargo, Javier es_ES
dc.contributor.author Ordoñez, Norberto es_ES
dc.contributor.author Ramírez, Diego es_ES
dc.date.accessioned 2024-10-15T10:15:19Z
dc.date.available 2024-10-15T10:15:19Z
dc.date.issued 2024-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/210151
dc.description.abstract [EN] Given a metric continuum X, we consider the collection of all regular subcontinua of X and the collection of all meager subcontinua of X, these hyperspaces are denoted by D(X) and M(X), respectively. It is known that D(X) is compact if and only if D(X) is finite. In this way, we find some conditions related about the cardinality of D(X) and we reduce the fact to count the elements of D(X) to a Graph Theory problem, as an application of this, we prove in particular that |D(X)| 6∈ {2, 3, 4, 5, 8, 9} for any continuum X. Also, we prove that D(X) is never homeomorphic to N. On the other hand, given a point p ∈ X, we consider the meager composant and the filament composant of p in X, denoted by MX p and F csX(p), respectively, and we study some relations between MX p and F csX(p) such as the equality of them as a subset of X. Also, we construct examples showing that the collection F cs(X) = {F csX(p) : p ∈ X} can be homeomorphic to: any finite discrete space, the harmonic sequence, the closure of the harmonic sequence and the Cantor set. Finally, we study the contractibility of M(X); we prove the arc of pseudo-arcs, which is a no contractible continuum, satisfies that its hyperspace of meager subcontinua is contractible, given a solution to Problem 3 of [10]. Most of the results shown in this paper are focus to answer problems and questions posed in [6], [9] and [10]. Also, we rise open problems. es_ES
dc.description.sponsorship Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT) es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Meager continuum es_ES
dc.subject Regular continuum es_ES
dc.subject Hyperspaces of continua es_ES
dc.subject Hyperspace of meager continua es_ES
dc.subject Hyperspace of regular continua es_ES
dc.subject Composant es_ES
dc.subject Meager composant es_ES
dc.subject Filament es_ES
dc.subject Filament composant es_ES
dc.title On the hyperspaces of meager and regular continua es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2024.20116
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Camargo, J.; Ordoñez, N.; Ramírez, D. (2024). On the hyperspaces of meager and regular continua. Applied General Topology. 25(2):385-406. https://doi.org/10.4995/agt.2024.20116 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2024.20116 es_ES
dc.description.upvformatpinicio 385 es_ES
dc.description.upvformatpfin 406 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\20116 es_ES
dc.contributor.funder Consejo Nacional de Humanidades, Ciencias y Tecnologías, México es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem