Mostrar el registro sencillo del ítem
dc.contributor.author | Camargo, Javier | es_ES |
dc.contributor.author | Ordoñez, Norberto | es_ES |
dc.contributor.author | Ramírez, Diego | es_ES |
dc.date.accessioned | 2024-10-15T10:15:19Z | |
dc.date.available | 2024-10-15T10:15:19Z | |
dc.date.issued | 2024-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/210151 | |
dc.description.abstract | [EN] Given a metric continuum X, we consider the collection of all regular subcontinua of X and the collection of all meager subcontinua of X, these hyperspaces are denoted by D(X) and M(X), respectively. It is known that D(X) is compact if and only if D(X) is finite. In this way, we find some conditions related about the cardinality of D(X) and we reduce the fact to count the elements of D(X) to a Graph Theory problem, as an application of this, we prove in particular that |D(X)| 6∈ {2, 3, 4, 5, 8, 9} for any continuum X. Also, we prove that D(X) is never homeomorphic to N. On the other hand, given a point p ∈ X, we consider the meager composant and the filament composant of p in X, denoted by MX p and F csX(p), respectively, and we study some relations between MX p and F csX(p) such as the equality of them as a subset of X. Also, we construct examples showing that the collection F cs(X) = {F csX(p) : p ∈ X} can be homeomorphic to: any finite discrete space, the harmonic sequence, the closure of the harmonic sequence and the Cantor set. Finally, we study the contractibility of M(X); we prove the arc of pseudo-arcs, which is a no contractible continuum, satisfies that its hyperspace of meager subcontinua is contractible, given a solution to Problem 3 of [10]. Most of the results shown in this paper are focus to answer problems and questions posed in [6], [9] and [10]. Also, we rise open problems. | es_ES |
dc.description.sponsorship | Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Meager continuum | es_ES |
dc.subject | Regular continuum | es_ES |
dc.subject | Hyperspaces of continua | es_ES |
dc.subject | Hyperspace of meager continua | es_ES |
dc.subject | Hyperspace of regular continua | es_ES |
dc.subject | Composant | es_ES |
dc.subject | Meager composant | es_ES |
dc.subject | Filament | es_ES |
dc.subject | Filament composant | es_ES |
dc.title | On the hyperspaces of meager and regular continua | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2024.20116 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Camargo, J.; Ordoñez, N.; Ramírez, D. (2024). On the hyperspaces of meager and regular continua. Applied General Topology. 25(2):385-406. https://doi.org/10.4995/agt.2024.20116 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2024.20116 | es_ES |
dc.description.upvformatpinicio | 385 | es_ES |
dc.description.upvformatpfin | 406 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\20116 | es_ES |
dc.contributor.funder | Consejo Nacional de Humanidades, Ciencias y Tecnologías, México | es_ES |