- -

A geometrical study about the biparametric family of anomalies in the elliptic two-body problem with extensions to other families

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A geometrical study about the biparametric family of anomalies in the elliptic two-body problem with extensions to other families

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Ortí, José Antonio es_ES
dc.contributor.author Marco Castillo, Francisco José es_ES
dc.contributor.author Martínez Uso, María José es_ES
dc.date.accessioned 2024-10-16T11:10:38Z
dc.date.available 2024-10-16T11:10:38Z
dc.date.issued 2024-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/210323
dc.description.abstract [EN] In the present paper, we efficiently solve the two-body problem for extreme cases such as those with high eccentricities. The use of numerical methods, with the usual variables, cannot maintain the perihelion passage accurately. In previous articles, we have verified that this problem is treated more adequately through temporal reparametrizations related to the mean anomaly through the partition function. The biparametric family of anomalies, with an appropriate partition function, allows a systematic study of these transformations. In the present work, we consider the elliptical orbit as a meridian section of the ellipsoid of revolution, and the partition function depends on two variables raised to specific parameters. One of the variables is the mean radius of the ellipsoid at the secondary, and the other is the distance to the primary. One parameter regulates the concentration of points in the apoapsis region, and the other produces a symmetrical displacement between the polar and equatorial regions. The three most used geodesy latitude variables are also studied, resulting in one not belonging to the biparametric family. However, it is in the one introduced now, which implies an extension of the biparametric method. The results obtained using the method presented here now allow a causal interpretation of the operation of numerous reparametrizations used in the study of orbital motion. es_ES
dc.description.sponsorship This work has been partially supported by grant 16I358.01/1 of University Jaume I of Castellón. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mathematical models in engineering es_ES
dc.subject Celestial mechanics es_ES
dc.subject Two-body problem es_ES
dc.subject Orbital motion es_ES
dc.subject Analytical regularization of the step size es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A geometrical study about the biparametric family of anomalies in the elliptic two-body problem with extensions to other families es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a17020066 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//16I358.01%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation López Ortí, JA.; Marco Castillo, FJ.; Martínez Uso, MJ. (2024). A geometrical study about the biparametric family of anomalies in the elliptic two-body problem with extensions to other families. Algorithms. 17(2). https://doi.org/10.3390/a17020066 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/a17020066 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1999-4893 es_ES
dc.relation.pasarela S\508035 es_ES
dc.contributor.funder Universitat Jaume I es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem