Mostrar el registro sencillo del ítem
dc.contributor.author | Peyman, Mohammad | es_ES |
dc.contributor.author | Martín-Solano, Xabier Andoni | es_ES |
dc.contributor.author | Panadero, Javier | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2024-10-16T11:10:41Z | |
dc.date.available | 2024-10-16T11:10:41Z | |
dc.date.issued | 2024-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/210325 | |
dc.description.abstract | [EN] In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its application in the context of unmanned aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and stochastic versions of the TOP, our approach considers a hybrid scenario, which combines deterministic, stochastic, and dynamic characteristics. The TOP involves visiting a set of customers using a team of vehicles to maximize the total collected reward. However, this hybrid version becomes notably complex due to the presence of uncertain travel times with dynamically changing factors. Some travel times are stochastic, while others are subject to dynamic factors such as weather conditions and traffic congestion. Our novel approach combines a savings-based heuristic algorithm, Monte Carlo simulations, and a multiple regression model. This integration incorporates the stochastic and dynamic nature of travel times, considering various dynamic conditions, and generates high-quality solutions in short computational times for the presented problem. | es_ES |
dc.description.sponsorship | This work was partially funded by the Spanish Ministry of Science and Innovation (PRE2020-091842, PID2022-138860NB-I00, RED2022-134703-T) and the Horizon Europe program (HORIZON-CL4-2022-HUMAN-01-14-101092612). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Team orienteering problem | es_ES |
dc.subject | Biased randomization | es_ES |
dc.subject | Learnheuristic | es_ES |
dc.subject | Simheuristic | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A Sim-Learnheuristic for the Team Orienteering Problem: Applications to Unmanned Aerial Vehicles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a17050200 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRE2020-091842/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Peyman, M.; Martín-Solano, XA.; Panadero, J.; Juan, AA. (2024). A Sim-Learnheuristic for the Team Orienteering Problem: Applications to Unmanned Aerial Vehicles. Algorithms. 17(5). https://doi.org/10.3390/a17050200 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/a17050200 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1999-4893 | es_ES |
dc.relation.pasarela | S\521802 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |