Mostrar el registro completo del ítem
Yousif, MZ.; Yu, L.; Hoyas, S.; Vinuesa, R.; Lim, H. (2023). A deep Learning approach for reconstructing 3D turbulent flows from 2D observation data. Scientific Reports. 13(1). https://doi.org/10.1038/s41598-023-29525-9
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/210402
Título: | A deep Learning approach for reconstructing 3D turbulent flows from 2D observation data | |
Autor: | Yousif, Mustafa Z. Yu, Linqui Vinuesa, Ricardo Lim, Hee-Chang | |
Fecha difusión: |
|
|
Resumen: |
[EN] Turbulence is a complex phenomenon that has a chaotic nature with multiple spatio-temporal scales, making predictions of turbulent flows a challenging topic. Nowadays, an abundance of high-fidelity databases can be ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1038/s41598-023-29525-9 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was supported by Human Resources Program in Energy Technology' of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, ...[+]
|
|
Tipo: |
|