Mostrar el registro completo del ítem
Zhao, Y.; Hernández-Orallo, J. (2024). The impact of sociality regimes on heterogeneous cooperative-competitive multi-agent reinforcement learning: a study with the predator-prey game. Journal of Experimental & Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813X.2024.2361408
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/210585
Título: | The impact of sociality regimes on heterogeneous cooperative-competitive multi-agent reinforcement learning: a study with the predator-prey game | |
Autor: | Zhao, Yue | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] The performance in multi-agent reinforcement learning (MARL) scenarios has usually been analysed in homogeneous teams with a few choices for the sociality regime (selfish, egalitarian, or altruistic). In this paper ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Cerrado | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1080/0952813X.2024.2361408 | |
Código del Proyecto: |
...[+] |
|
Agradecimientos: |
This work was funded by the EU (FEDER) and Spanish grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039/501100011033 and by 'ERDF A way of making Europe', Generalitat Valenciana under CIPROM/2022/6 (FASSLOW) and ...[+]
|
|
Tipo: |
|