- -

optimization of the air loop system in a hydrogen fuel cell for vehicle application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

optimization of the air loop system in a hydrogen fuel cell for vehicle application

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Boggio, Santiago Daniel es_ES
dc.contributor.author Di Blasio, Davide es_ES
dc.contributor.author Fletcher, Tom es_ES
dc.contributor.author Burque, Richard es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.date.accessioned 2024-10-23T18:08:28Z
dc.date.available 2024-10-23T18:08:28Z
dc.date.issued 2023-05-01 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/210793
dc.description.abstract [EN] Hydrogen fuel cells are a potential route to decarbonize the automotive sector due to the zero CO2 tailpipe emissions, faster re-fuelling, and higher energy density than their direct competitor, the battery-electric powertrain. One of the key challenges is to find the best air path configuration to achieve high efficiency in a system level. This work aims to optimize, setup, and demonstrate a highly efficient Proton Exchange Membrane fuel cell system (PEMFC). This powerplant is hydrogen fuelled and scalable to achieve the required power output for different vehicles. This work evaluates a PEMFC by a 1D-numerical approach. The fuel cell is modelled, validated, and later studied under different air inlet conditions. The main goal is the evaluation of different air path layouts to achieve the highest system efficiency. Numerical simulations of electric compressor and coupled and de-coupled electrically assisted turbocharging are performed with different component sizes and cathode pressures. Therefore, this work provides an overview of our initial findings that will outline the key modelling challenges for fuel cell systems and then present a comparison of different air-path architectures. The coupled electrically assisted turbocharger is determined to be the best layout with an improvement of 10% of the delivered power at a high current load. The e-turbocharging optimized by the proposed methodology allows reduction of the peak electric machine electric power by 60%. es_ES
dc.description.sponsorship Santiago Martinez-Boggio would like to thank the UPV for the program: Ayudas para la movilidad dentro de estancias de doctorado de la Universitat Politecnica de Valencia (convocatoria vicerrectorado de investigacion, innovacion y transferencia 2021). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fuel cell es_ES
dc.subject Hydrogen vehicles es_ES
dc.subject Air management es_ES
dc.subject Turbomachinery es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title optimization of the air loop system in a hydrogen fuel cell for vehicle application es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2023.116911 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martínez-Boggio, SD.; Di Blasio, D.; Fletcher, T.; Burque, R.; García Martínez, A.; Monsalve-Serrano, J. (2023). optimization of the air loop system in a hydrogen fuel cell for vehicle application. Energy Conversion and Management. 283. https://doi.org/10.1016/j.enconman.2023.116911 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2023.116911 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 283 es_ES
dc.relation.pasarela S\485658 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem