- -

Sequence-oriented sensitive analysis for PM2.5 exposure and risk assessment using interactive process mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sequence-oriented sensitive analysis for PM2.5 exposure and risk assessment using interactive process mining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Illueca Fernández, Eduardo es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.contributor.author Jara Valera, Antonio Jesus es_ES
dc.contributor.author Fernández Breis, Jesualdo Tomás es_ES
dc.contributor.author Seoane Martinez, Fernando es_ES
dc.date.accessioned 2024-10-23T18:08:30Z
dc.date.available 2024-10-23T18:08:30Z
dc.date.issued 2023-08-24 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/210795
dc.description.abstract [EN] The World Health Organization has estimated that air pollution will be one of the most significant challenges related to the environment in the following years, and air quality monitoring and climate change mitigation actions have been promoted due to the Paris Agreement because of their impact on mortality risk. Thus, generating a methodology that supports experts in making decisions based on exposure data, identifying exposure-related activities, and proposing mitigation scenarios is essential. In this context, the emergence of Interactive Process Mining-a discipline that has progressed in the last years in healthcare-could help to develop a methodology based on human knowledge. For this reason, we propose a new methodology for a sequence-oriented sensitive analysis to identify the best activities and parameters to offer a mitigation policy. This methodology is innovative in the following points: i) we present in this paper the first application of Interactive Process Mining pollution personal exposure mitigation; ii) our solution reduces the computation cost and time of the traditional sensitive analysis; iii) the methodology is human-oriented in the sense that the process should be done with the environmental expert; and iv) our solution has been tested with synthetic data to explore the viability before the move to physical exposure measurements, taking the city of Valencia as the use case, and overcoming the difficulty of performing exposure measurements. This dataset has been generated with a model that considers the city of Valencia's demographic and epidemiological statistics. We have demonstrated that the assessments done using sequence-oriented sensitive analysis can identify target activities. The proposed scenarios can improve the initial KPIs-in the best scenario; we reduce the population exposure by 18% and the relative risk by 12%. Consequently, our proposal could be used with real data in future steps, becoming an innovative point for air pollution mitigation and environmental improvement. es_ES
dc.description.sponsorship The author EIF has received funded from Fundacion Seneca (https://fseneca.es/), grant number 21300/FPI/19 The authors have received funded from EIT Health (https://eithealth.eu/), grant number 220649 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Air pollution es_ES
dc.subject World Health Organization (WHO) es_ES
dc.subject Air quality monitoring es_ES
dc.subject Climate change mitigation es_ES
dc.subject Interactive Process Mining es_ES
dc.title Sequence-oriented sensitive analysis for PM2.5 exposure and risk assessment using interactive process mining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0290372 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//21300%2FFPI%2F19/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Health//220649/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Illueca Fernández, E.; Fernández Llatas, C.; Jara Valera, AJ.; Fernández Breis, JT.; Seoane Martinez, F. (2023). Sequence-oriented sensitive analysis for PM2.5 exposure and risk assessment using interactive process mining. PLoS ONE. 18(8):1-23. https://doi.org/10.1371/journal.pone.0290372 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0290372 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 37616197 es_ES
dc.identifier.pmcid PMC10449204 es_ES
dc.relation.pasarela S\515136 es_ES
dc.contributor.funder EIT Health es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem