Latella, R.; Gonzalez, AJ.; Benlloch Baviera, JM.; Lecoq, P.; Konstantinou, G. (2024). Comparative Analysis of Data Acquisition Setups for Fast Timing in ToF-PET Applications. IEEE Transactions on Radiation and Plasma Medical Sciences. 8(7):743-751. https://doi.org/10.1109/TRPMS.2024.3401391
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211034
Título:
|
Comparative Analysis of Data Acquisition Setups for Fast Timing in ToF-PET Applications
|
Autor:
|
Latella, Riccardo
Gonzalez, Antonio J.
Benlloch Baviera, Jose María
Lecoq, Paul
Konstantinou, Georgios
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
|
Fecha difusión:
|
|
Resumen:
|
[EN] The signal-to-noise ratio in positron emission tomography (PET) improves with precise timing resolution. PET systems enabling the capability of time-of-flight (ToF) are nowadays available. This study assesses various ...[+]
[EN] The signal-to-noise ratio in positron emission tomography (PET) improves with precise timing resolution. PET systems enabling the capability of time-of-flight (ToF) are nowadays available. This study assesses various data configurations, comparing the obtained timing performances applicable to time-of-flight positron emission tomography (ToF-PET) systems. Different readout configurations were evaluated together with silicon photomultipliers (SiPMs) photosensors from the Fondazione Bruno Kessler (FBK), with and without the so-called metal trench (MT) technology. The tests were carried out with scintillation crystals of 3x3x5 mm(3) (LYSO:Ce,Ca) from SIPAT. Two onboard FPGA-based systems, namely, the Felix time-to-digital converter (TDC) from Tediel S.r.l. and the ASIC-based FastIC from the University of Barcelona, along with custom-made high-frequency electronics (CM-HF), were compared. Considering only photopeak events, the best-coincidence timing resolution (CTR) results obtained were 71 ps with the MT SiPMs. This result worsened to 88 ps with the old version of the same device that does not include the MT technology (called HD). The results demonstrate substantial CTR improvements when MT SiPMs were used across the different scenarios, resulting in a timing improvement in the 10 to 45-ps range compared to HD SiPMs. Notably, the Felix TDC achieved sub-100-ps timing results, emphasizing the potential of FPGA technology in ToF-PET applications. Moreover, the fully passive version of the CM-HF connected to the MT SiPMs shows only a degradation of 8-ps difference compared to the version using amplifiers. The novel MT-type SiPMs promise superior timing performance, enhancing accuracy and efficiency in PET imaging systems.
[-]
|
Palabras clave:
|
Timing
,
Crystals
,
Signal resolution
,
Oscilloscopes
,
Detectors
,
Data acquisition
,
Silicon
,
DAQ
,
Lutetium yttrium oxyorthosilicate (LYSO)
,
Metal trenches
,
NUV,time-of-flight positron emission tomography (ToF-PET)
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
IEEE Transactions on Radiation and Plasma Medical Sciences. (issn:
2469-7311
)
|
DOI:
|
10.1109/TRPMS.2024.3401391
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/TRPMS.2024.3401391
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/FP7/338953/EU/TICAL: 4D total absorptionTime Imaging CALorimeter/
info:eu-repo/grantAgreement/EC/H2020/680552/EU/ULTrafast Imaging sensor for Medical Applications/
info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/
|
Agradecimientos:
|
This work was supported in part by the frame of the ERC Advanced Grant TICAL under Grant 338953 PI (P. Lecoq), and the related Prof-of-Concept Project ULTIMA under Grant 680552, both funded by the European Commission; and ...[+]
This work was supported in part by the frame of the ERC Advanced Grant TICAL under Grant 338953 PI (P. Lecoq), and the related Prof-of-Concept Project ULTIMA under Grant 680552, both funded by the European Commission; and in part by the European Research Council (ERC) through the European Union's Horizon 2020 Research and Innovation Program under Grant 695536.
[-]
|
Tipo:
|
Artículo
|