- -

Employment of MQ gas sensors for the classification of Cistus ladanifer essential oils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Employment of MQ gas sensors for the classification of Cistus ladanifer essential oils

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Blasco, Francisco Javier es_ES
dc.contributor.author Viciano-Tudela, Sandra es_ES
dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Ahmad, Ali es_ES
dc.contributor.author Chaloupková, Veronika es_ES
dc.contributor.author Bados, Raquel es_ES
dc.contributor.author Esteban Pascual, Luis Saul es_ES
dc.contributor.author Mediavilla, Irene es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-10-29T19:09:42Z
dc.date.available 2024-10-29T19:09:42Z
dc.date.issued 2024-11 es_ES
dc.identifier.issn 0026-265X es_ES
dc.identifier.uri http://hdl.handle.net/10251/211043
dc.description.abstract [EN] The chemical composition of essential oils (EOs) from Cistus ladanifer has a huge variability throughout the year, impacting the oil quality. Nowadays, EO analytic chemistry techniques, which are expensive and destroy the sample, are utilized to measure the chemical composition. In the paper, we propose a combination of low-cost sensors and machine learning based system. As low-cost sensors, seven gas sensors are combined to obtain up to 36 features. Regarding machine learning, 31 multiclass classification algorithms are applied. Data from sensors were collected for 33 samples of EO from Cistus ladanifer. The generated dataset was split into training and test datasets, with 75 % of the data for training. The datasets were created to ensure a homogeneous chemical composition distribution on both training and test datasets. There were three target chemical compounds: Alpha-pinene and Viridiflorol as individual compounds and Terpenic Hydrocarbons as a group of chemical compounds. The value of the percentage of each targeted compound is converted into a categoric variable with 5 possible values, 1 being the lowest concentration and 5 being the maximum one. The data of the MQ-sensors were included as the input for the models, and each one of the targeted chemical compounds was selected as an output for different models. The input features were ranged using different algorithms for the feature selection process. The results indicate that there is no valid classification model for Viridiflorol, and limited accuracy is achieved for Alpha-pinene. Meanwhile, for Terpenic Hydrocarbons, an accuracy of 91.6 % is achieved. It is important to highlight that these accuracies were attained when a reduced number of features were included, ranging the number of features from 11 to 13. This is the first case in which MQ-based gas sensors, or other metal oxide sensors, are used to correctly determine the concentration of a chemical compounds in a complex matrix formed by dozens of compounds. This system will provide a cheap method to determine the quality of EOs and confirm the benefits of combining low-cost sensors with machine learning. es_ES
dc.description.sponsorship This work has been funded by the "Ministerio de Ciencia e Innovacion" through the Project PID2020-114467RR-C33/AEI/10.13039/501100011033, and by the "Ministerio de Economia y Competitividad" through the Project TED2021-131040B-C31. This study also forms part of the ThinkInAzul programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana (THINKINAZUL/2021/002) . Llamada iniciada 13:02. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microchemical Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Metal oxide sensors es_ES
dc.subject Multiclass classification es_ES
dc.subject Viridiflorol es_ES
dc.subject Alpha-pinene es_ES
dc.subject Artificial Intelligence es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Employment of MQ gas sensors for the classification of Cistus ladanifer essential oils es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.microc.2024.111585 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114467RR-C33/ES/RED HETEROGENEA INTELIGENTE DE SENSORES INALAMBRICOS PARA MONITORIZAR Y ESTIMAR EL CONTENIDO DE RESINA DE CISTUS LADANIFER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//THINKINAZUL%2F2021%2F002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TED2021-131040B-C31/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Díaz-Blasco, FJ.; Viciano-Tudela, S.; Parra, L.; Ahmad, A.; Chaloupková, V.; Bados, R.; Esteban Pascual, LS.... (2024). Employment of MQ gas sensors for the classification of Cistus ladanifer essential oils. Microchemical Journal. 206. https://doi.org/10.1016/j.microc.2024.111585 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.microc.2024.111585 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 206 es_ES
dc.relation.pasarela S\527274 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem