- -

Federated learning: A cutting-edge survey of the latest advancements and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Federated learning: A cutting-edge survey of the latest advancements and applications

Mostrar el registro completo del ítem

Akhtarshenas, A.; Vahedifar, MA.; Ayoobi, N.; Maham, B.; Alizadeh, T.; Ebrahimi, S.; López-Pérez, D. (2024). Federated learning: A cutting-edge survey of the latest advancements and applications. Computer Communications. 228. https://doi.org/10.1016/j.comcom.2024.107964

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211300

Ficheros en el ítem

Metadatos del ítem

Título: Federated learning: A cutting-edge survey of the latest advancements and applications
Autor: Akhtarshenas, Azim Vahedifar, Mohammad Ali Ayoobi, Navid Maham, Behrouz Alizadeh, Tohid Ebrahimi, Sina López-Pérez, David
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Robust machine learning (ML) models can be developed by leveraging large volumes of data and distributing the computational tasks across numerous devices or servers. Federated learning (FL) is a technique in the realm ...[+]
Palabras clave: Artificial intelligenc , 6G,Machine learning , Federated learning , Deep reinforcement learning , Neural network , Internet of things , Edge computing , Block-chain , Privacy preserving , Resource allocation
Derechos de uso: Cerrado
Fuente:
Computer Communications. (issn: 0140-3664 )
DOI: 10.1016/j.comcom.2024.107964
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.comcom.2024.107964
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//CIDEXG%2F2022%2F17//iTENTE/
info:eu-repo/grantAgreement/MICINN//CNS2023-144333/
Agradecimientos:
This research is supported by the Generalitat Valenciana through the CIDEGENT PlaGenT, Grant CIDEXG/2022/17, Project iTENTE, and the action CNS2023-144333, financed by MCIN/AEI/10.13039/501100011033 and the European Union ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem