- -

Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tabatabaei, Zahra es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Oliver Moll, Javier es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2024-11-05T19:06:03Z
dc.date.available 2024-11-05T19:06:03Z
dc.date.issued 2023-12-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211315
dc.description.abstract [EN] According to the Global Cancer Observatory, 2020, breast cancer is the most prevalent cancer type in both genders (11.7%), while prostate cancer is the second most common cancer type in men (14.1%). In digital pathology, Content-Based Medical Image Retrieval (CBMIR) is a powerful tool for improving cancer diagnosis by searching for similar histopathological Whole Slide Images (WSIs). CBMIR empowers pathologists to explore similar patches to their query, enhancing diagnostic reliability and accuracy. In this paper, a customized unsupervised Convolutional Auto Encoder (CAE) was developed in the proposed Unsupervised CBMIR (UCBMIR) to replicate the traditional cancer diagnosis workflow, offering the potential to enhance diagnostic accuracy and efficiency by reducing pathologists¿ workload. Furthermore, it provides a more transparent supporting tool for pathologists in cancer diagnosis. UCBMIR was evaluated using two widely used numerical techniques in CBMIR, visual techniques, and compared with a classifier. Validation encompassed three data sets, including an external evaluation to demonstrate its effectiveness. UCBMIR achieved 99% and 80% top 5 recalls on BreaKHis and SICAPv2 with the first evaluation technique while using the second technique, it reached 91% and 70% precision for BreaKHis and SICAPv2, respectively. Moreover, UCBMIR displayed a strong capability to identify diverse patterns, yielding 81% accuracy in the top 5 predictions on an external image from Arvaniti. The proposed unsupervised CBMIR tool delivered 83% accuracy in retrieving images with the same cancer type. es_ES
dc.description.sponsorship This study is funded by the European Union s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLARIFY Project). The work of Adrián Colomer has been supported by Ayuda a Primeros Proyectos de Investigación (PAID-06-22), Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (UPV). es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Histopathological images es_ES
dc.subject Content-based medical image retrieval (CBMIR) es_ES
dc.subject Convolutional autoencoder es_ES
dc.subject Unsupervised learning es_ES
dc.subject Whole slide images (WSIs) es_ES
dc.subject Digital pathology es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2023.3343845 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-22/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Tabatabaei, Z.; Colomer, A.; Oliver Moll, J.; Naranjo Ornedo, V. (2023). Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach. IEEE Access. 11:143387-143401. https://doi.org/10.1109/ACCESS.2023.3343845 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2023.3343845 es_ES
dc.description.upvformatpinicio 143387 es_ES
dc.description.upvformatpfin 143401 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\506145 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem