Mostrar el registro sencillo del ítem
dc.contributor.author | Tabatabaei, Zahra | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Oliver Moll, Javier | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2024-11-05T19:06:03Z | |
dc.date.available | 2024-11-05T19:06:03Z | |
dc.date.issued | 2023-12-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211315 | |
dc.description.abstract | [EN] According to the Global Cancer Observatory, 2020, breast cancer is the most prevalent cancer type in both genders (11.7%), while prostate cancer is the second most common cancer type in men (14.1%). In digital pathology, Content-Based Medical Image Retrieval (CBMIR) is a powerful tool for improving cancer diagnosis by searching for similar histopathological Whole Slide Images (WSIs). CBMIR empowers pathologists to explore similar patches to their query, enhancing diagnostic reliability and accuracy. In this paper, a customized unsupervised Convolutional Auto Encoder (CAE) was developed in the proposed Unsupervised CBMIR (UCBMIR) to replicate the traditional cancer diagnosis workflow, offering the potential to enhance diagnostic accuracy and efficiency by reducing pathologists¿ workload. Furthermore, it provides a more transparent supporting tool for pathologists in cancer diagnosis. UCBMIR was evaluated using two widely used numerical techniques in CBMIR, visual techniques, and compared with a classifier. Validation encompassed three data sets, including an external evaluation to demonstrate its effectiveness. UCBMIR achieved 99% and 80% top 5 recalls on BreaKHis and SICAPv2 with the first evaluation technique while using the second technique, it reached 91% and 70% precision for BreaKHis and SICAPv2, respectively. Moreover, UCBMIR displayed a strong capability to identify diverse patterns, yielding 81% accuracy in the top 5 predictions on an external image from Arvaniti. The proposed unsupervised CBMIR tool delivered 83% accuracy in retrieving images with the same cancer type. | es_ES |
dc.description.sponsorship | This study is funded by the European Union s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLARIFY Project). The work of Adrián Colomer has been supported by Ayuda a Primeros Proyectos de Investigación (PAID-06-22), Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (UPV). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Histopathological images | es_ES |
dc.subject | Content-based medical image retrieval (CBMIR) | es_ES |
dc.subject | Convolutional autoencoder | es_ES |
dc.subject | Unsupervised learning | es_ES |
dc.subject | Whole slide images (WSIs) | es_ES |
dc.subject | Digital pathology | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2023.3343845 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-22/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Tabatabaei, Z.; Colomer, A.; Oliver Moll, J.; Naranjo Ornedo, V. (2023). Toward More Transparent and Accurate Cancer Diagnosis With an Unsupervised CAE Approach. IEEE Access. 11:143387-143401. https://doi.org/10.1109/ACCESS.2023.3343845 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2023.3343845 | es_ES |
dc.description.upvformatpinicio | 143387 | es_ES |
dc.description.upvformatpfin | 143401 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\506145 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |