Resumen:
|
[ES] La presente Tesis Doctoral se centra en la síntesis, caracterización y
optimización de nanoestructuras de óxido de wolframio (WO3) y
nanoestructuras híbridas de WO3-MoO3 mediante anodizado
electroquímico. Estas ...[+]
[ES] La presente Tesis Doctoral se centra en la síntesis, caracterización y
optimización de nanoestructuras de óxido de wolframio (WO3) y
nanoestructuras híbridas de WO3-MoO3 mediante anodizado
electroquímico. Estas nanoestructuras se emplean como fotocatalizadores
para la degradación de contaminantes y como ánodos para baterías de ion
de litio.
El WO3 destaca por sus propiedades semiconductoras, ópticas y eléctricas
excepcionales. En aplicaciones medioambiental, las nanoestructuras de WO3
son de gran interés para la fotoelectrocatalisis, un proceso prometedor para
la degradación de contaminantes en el agua. El WO3 destaca como
fotoánodo debido a su fotoestabilidad, alta conductividad eléctrica y
capacidad de absorción de la luz visible. En el campo energético, el WO3
muestra un gran potencial como ánodo en baterías de ion de litio ya que su
estructura cristalina permite la inserción y extracción eficiente de iones de
litio, mejorando la capacidad de almacenamiento y la durabilidad de las
baterías gracias a su estabilidad electroquímica.
Para mejorar las nanoestructuras de WO3, se ha estudiado su combinación
con óxido de molibdeno (MoO3). El molibdeno, con propiedades químicas y
estructurales similares al wolframio, facilita la deposición efectiva en las
nanoestructuras de WO3, ajusta el ancho de banda prohibida, mejora la
conductividad, la difusión iónica y reduce la recombinación de portadores de
carga. Esta combinación de óxidos resulta en una mayor eficiencia
electroquímica, haciendo de las nanoestructuras híbridas WO3-MoO3 una
solución prometedora para aplicaciones energéticas.
En primer lugar, se sintetizaron las nanoestructuras de WO3, estudiando la
influencia de la temperatura de calentamiento tras la síntesis y la adición de
disolventes en el electrolito de síntesis. La temperatura óptima fue de 600
°C, obteniendo nanoestructuras cristalinas con excelentes propiedades
fotoelectroquímicas. Además, se demuestra que la incorporación de
disolventes en el electrolito de síntesis influye significativamente en las propiedades de las nanoestructuras, obteniendo que la adición de un 50 %
de isopropanol en el electrolito mejora notablemente sus propiedades
electroquímicas.
En segundo lugar, se sintetizaron nanoestructuras híbridas de WO3-
MoO3·añadiendo diferentes concentraciones de molibdato al electrolito de
síntesis. La concentración de 0,1 M de molibdato produjo nanoestructuras
con propiedades electroquímicas superiores, destacándolas como
prometedoras para su uso como ánodo en baterías.
Las nanoestructuras fueron exhaustivamente caracterizadas morfológica,
estructural, química, electroquímica y fotoelectroquímicamente.
Por último, las nanoestructuras con mejores propiedades
fotoelectroquímicas y electroquímicas se emplearon como ánodo en
aplicaciones medioambientales y energéticas, respectivamente.
En el ámbito medioambiental, se evaluó la eficiencia de las nanoestructuras
en la degradación de disruptores endocrinos pertenecientes a diferentes
familias químicas, así como sus mezclas y su toxicidad. Las nanoestructuras
de WO3 demostraron ser efectivas, logrando una degradación del 100 % de
pesticidas, parabenos y fenoles en menos de 4 horas. Sin embargo, la técnica
no fue eficiente para eliminar ftalatos, generando productos finales más
tóxicos.
En el ámbito energético, se estudió el rendimiento de las nanoestructuras
como ánodos en baterías de ion de litio, considerando también el impacto
del electrolito. La nanoestructura híbrida WO3-MoO3 mostró el mejor
rendimiento cuando se utilizó un electrolito que combinaba bisoxalato
borato de litio (LiBOB) con aditivos y solventes adicionales.
Este trabajo ofrece una contribución significativa al desarrollo de soluciones
sostenibles para problemas medioambientales y energéticos, subrayando el
potencial de las nanoestructuras de WO3 y WO3-MoO3.
[-]
[CA] La present Tesi Doctoral se centra en la síntesi, caracterització i optimització
de nanoestructures d'òxid de wolframi (WO3) i nanoestructures híbrides de
WO3-MoO3 mitjançant anodització electroquímica. Aquestes
...[+]
[CA] La present Tesi Doctoral se centra en la síntesi, caracterització i optimització
de nanoestructures d'òxid de wolframi (WO3) i nanoestructures híbrides de
WO3-MoO3 mitjançant anodització electroquímica. Aquestes
nanoestructures s'utilitzen com a fotocatalitzadors per a la degradació de
contaminants i com a ànodes per a bateries d'ió de liti.
El WO3 destaca per les seues propietats semiconductores, òptiques i
elèctriques excepcionals. En aplicacions mediambientals, les
nanoestructures de WO3 són de gran interès per a la fotoelectrocatalisi, un
procés prometedor per a la degradació de contaminants en l'aigua. El WO3
destaca com a fotoànode per la seua fotoestabilitat, alta conductivitat
elèctrica i capacitat d'absorció de la llum visible. En el camp energètic, el WO3
mostra un gran potencial com a ànode en bateries d'ió de liti ja que la seua
estructura cristal·lina permet la inserció i extracció eficient d'ions de liti,
millorant la capacitat d'emmagatzematge i la durabilitat de les bateries
gràcies a la seua estabilitat electroquímica.
Per a millorar les nanoestructures de WO3, s'ha estudiat la seua combinació
amb òxid de molibdè (MoO3). El molibdè, amb propietats químiques i
estructurals similars al wolframi, facilita la deposició efectiva en les
nanoestructures de WO3, ajusta l'amplada de banda prohibida, millora la
conductivitat, la difusió iònica i redueix la recombinació de portadors de
càrrega. Això resulta en una major eficiència electroquímica, fent de les
nanoestructures híbrides WO3-MoO3 una solució prometedora per a
aplicacions energètiques.
En primer lloc, es van sintetitzar les nanoestructures de WO3, estudiant la
influència de la temperatura de calentament després de la síntesi i l'addició
de dissolvents en l'electròlit de síntesi. La temperatura òptima va ser de 600
°C, obtenint nanoestructures cristal·lines amb excel·lents propietats
fotoelectroquímiques. A més, es demostra que la incorporació de dissolvents
en l'electròlit de síntesi influeix significativament en les propietats de les nanoestructures, obtenint que l'addició d'un 50 % d'isopropanol en
l'electròlit millora notablement les seues propietats electroquímiques.
En segon lloc, es van sintetitzar nanoestructures híbrides de WO3-MoO3
afegint diferents concentracions de molibdat a l'electròlit de síntesi. La
concentració de 0,1 M de molibdat va produir nanoestructures amb
propietats electroquímiques superiors, destacant-les com a prometedores
per al seu ús com a ànode en bateries.
Les nanoestructures van ser exhaustivament caracteritzades
morfològicament, estructuralment, químicament, electroquímicament i
fotoelectroquímicament.
Finalment, les nanoestructures amb millors propietats fotoelectroquímiques
i electroquímiques s'utilizaren com a ànode en aplicacions mediambientals i
energètiques, respectivament.
En l'àmbit mediambiental, s'avaluà l'eficiència de les nanoestructures en la
degradació de disruptors endocrins pertanyents a diferents famílies
químiques, així com una mescla d'ells i la seua toxicitat. Les nanoestructures
de WO3 demostraren ser efectives, aconseguint una degradació del 100 % de
pesticides, parabens i fenols en menys de 4 hores. No obstant això, la tècnica
no va ser eficient per a eliminar ftalats, generant productes finals més tòxics.
En l'àmbit energètic, s'estudià el rendiment de les nanoestructures com a
ànodes en bateries d'ió de liti, considerant també l'impacte de l'electròlit. La
nanoestructura híbrida WO3-MoO3 mostrà el millor rendiment quan s'utilitzà
un electròlit que combinava bis(oxalat)borat de liti (LiBOB) amb additius i
dissolvents addicionals.
Aquest treball ofereix una contribució significativa al desenvolupament de
solucions sostenibles per a problemes mediambientals i energètics,
subratllant el potencial de les nanoestructures de WO3 i WO3-MoO3.
[-]
[EN] This Doctoral Thesis focuses on the synthesis, characterization, and
optimization of tungsten oxide (WO3) nanostructures and hybrid WO3-MoO3
nanostructures through electrochemical anodization. These nanostructures
are ...[+]
[EN] This Doctoral Thesis focuses on the synthesis, characterization, and
optimization of tungsten oxide (WO3) nanostructures and hybrid WO3-MoO3
nanostructures through electrochemical anodization. These nanostructures
are used as photocatalysts for contaminant degradation and as anodes for
lithium-ion batteries.
WO3 stands out for its exceptional semiconductor, optical, and electrical
properties. In environmental applications, WO3 nanostructures are of great
interest for photoelectrocatalysis, a promising process for contaminant
degradation in water. WO3 is highly effective as a photoanode due to its
photostability, high electrical conductivity, and visible light absorption
capacity. In the energy field, WO3 shows great potential as an anode in
lithium-ion batteries because its crystalline structure allows efficient
insertion and extraction of lithium ions, improving storage capacity and
battery durability thanks to its electrochemical stability.
To improve WO3 nanostructures, their combination with molybdenum oxide
(MoO3) has been studied. Molybdenum, with chemical and structural
properties similar to tungsten, facilitates effective deposition in WO3
nanostructures, adjusts the bandgap, improves conductivity, ionic diffusion,
and reduces charge carrier recombination. This results in greater
electrochemical efficiency, making hybrid WO3-MoO3 nanostructures a
promising solution for energy applications.
Firstly, WO3 nanostructures were synthesized, studying the influence of the
annealing temperature and the addition of solvents to the synthesis
electrolyte. The optimal temperature was 600 °C, obtaining crystalline
nanostructures with excellent photoelectrochemical properties.
Additionally, it was demonstrated that the incorporation of solvents in the
synthesis electrolyte significantly influences the properties of the
nanostructures, showing that the addition of 50 % isopropanol in the
electrolyte notably improves their electrochemical properties.
Secondly, hybrid WO3-MoO3 nanostructures were synthesized by adding
different concentrations of molybdate to the synthesis electrolyte. The
concentration of 0.1 M molybdate produced nanostructures with superior
electrochemical properties, making them promising for use as anodes in
batteries.
The nanostructures were exhaustively characterized morphologically,
structurally, chemically, electrochemically, and photoelectrochemically.
Finally, the nanostructures with the best photoelectrochemical and
electrochemical properties were used as anodes in environmental and
energy applications, respectively.
In the environmental field, the efficiency of the nanostructures in the
degradation of endocrine disruptors from different chemical families, as well
as their mixtures and toxicity, was evaluated. WO3 nanostructures proved to
be effective, achieving 100 % degradation of pesticides, parabens, and
phenols in less than 4 hours. However, the technique was not efficient in
eliminating phthalates, generating more toxic final products.
In the energy field, the performance of the nanostructures as anodes in
lithium-ion batteries was studied, also considering the impact of the
electrolyte. The hybrid WO3-MoO3 nanostructure showed the best
performance when an electrolyte combining Lithium bis(oxalate)borate
(LiBOB) with additional additives and solvents was used.
This work offers a significant contribution to the development of sustainable
solutions for environmental and energy problems, highlighting the potential
of WO3 and WO3-MoO3 nanostructures.
[-]
|