- -

Automatic cross-validation in structured models: Is it time to leave out leave-one-out?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic cross-validation in structured models: Is it time to leave out leave-one-out?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Adin, Aritz es_ES
dc.contributor.author Teixeira Krainski, Elias es_ES
dc.contributor.author Lenzi, Amanda es_ES
dc.contributor.author Liu, Zhedong es_ES
dc.contributor.author Martínez-Minaya, Joaquín es_ES
dc.contributor.author Rue, Haavard es_ES
dc.date.accessioned 2024-11-06T19:19:00Z
dc.date.available 2024-11-06T19:19:00Z
dc.date.issued 2024-08 es_ES
dc.identifier.issn 2211-6753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211432
dc.description.abstract [EN] Standard techniques such as leave-one-out cross-validation (LOOCV) might not be suitable for evaluating the predictive performance of models incorporating structured random effects. In such cases, the correlation between the training and test sets could have a notable impact on the model's prediction error. To overcome this issue, an automatic group construction procedure for leave-group-out cross validation (LGOCV) has recently emerged as a valuable tool for enhancing predictive performance measurement in structured models. The purpose of this paper is (i) to compare LOOCV and LGOCV within structured models, emphasizing model selection and predictive performance, and (ii) to provide real data applications in spatial statistics using complex structured models fitted with INLA, showcasing the utility of the automatic LGOCV method. First, we briefly review the key aspects of the recently proposed LGOCV method for automatic group construction in latent Gaussian models. We also demonstrate the effectiveness of this method for selecting the model with the highest predictive performance by simulating extrapolation tasks in both temporal and spatial data analyses. Finally, we provide insights into the effectiveness of the LGOCV method in modeling complex structured data, encompassing spatio-temporal multivariate count data, spatial compositional data, and spatio-temporal geospatial data. es_ES
dc.description.sponsorship Open access funding provided by Universidad Publica de Navarra. This research has been supported by project PID2020-113125RB-I00/MCIN/AEI/10.13039/501100011033 for Adin, A., and by project PID2020-115882RB-I00 for Martinez-Minaya, J. We would like to thank the valuable comments made by two anonymous reviewers that have contributed to clarify some aspects of this paper. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Spatial Statistics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cross-validation es_ES
dc.subject Hierarchical models es_ES
dc.subject INLA es_ES
dc.subject Spatial statistics es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Automatic cross-validation in structured models: Is it time to leave out leave-one-out? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.spasta.2024.100843 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/ESTADISTICA ESPACIO-TEMPORAL PARA LA RESOLUCION DE PROBLEMAS EN SALUD PUBLICA Y TELEDETECCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115882RB-I00/ES/NUEVAS PROPUESTAS PARA LA ESTIMACION, PREDICCION Y VALIDACION DE MODELOS SEMIPARAMETRICOS PARA EL ANALISIS DE DATOS COMPLEJOS CON APLICACIONES EN SALUD Y CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Adin, A.; Teixeira Krainski, E.; Lenzi, A.; Liu, Z.; Martínez-Minaya, J.; Rue, H. (2024). Automatic cross-validation in structured models: Is it time to leave out leave-one-out?. Spatial Statistics. 62. https://doi.org/10.1016/j.spasta.2024.100843 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.spasta.2024.100843 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.relation.pasarela S\528265 es_ES
dc.contributor.funder Universidad Pública de Navarra es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem