- -

118 DHGLMF90: A software tool using double hierarchical generalized linear models for estimating the genetic heterogeneity of residual variance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

118 DHGLMF90: A software tool using double hierarchical generalized linear models for estimating the genetic heterogeneity of residual variance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvarez Munera, Alejandra es_ES
dc.contributor.author Bermann, Matias es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author Casto-Rebollo, Cristina es_ES
dc.contributor.author Misztal, Ignacy es_ES
dc.contributor.author Lourenco, Daniela es_ES
dc.date.accessioned 2024-11-06T19:19:23Z
dc.date.available 2024-11-06T19:19:23Z
dc.date.issued 2024-09 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211446
dc.description.abstract [EN] In animal breeding, there is a growing interest in selecting animals that exhibit uniform responses to environmental conditions, aiming for product consistency as a desirable breeding objective. This could be achieved by modeling heteroskedastic residuals when estimating breeding values through a hierarchical single-trait model that includes a mean and dispersion part. The latter could be influenced by genetic and non-genetic features. Bayesian methods can estimate heteroskedastic residuals using the Metropolis-Hastings algorithm, which is a slow and inefficient approach. Double hierarchical generalized linear models (DHGLM) provide a faster alternative to Bayesian methods. This study aimed to develop software named DHGLMF90 to implement DHGLM using a highly efficient algorithm to accurately estimate heterogeneous residual variances and breeding values, particularly suited for handling large datasets. We improved the reweighted least squares algorithm (IRWLS) to enhance convergence properties compared with prior implementations. IRWLS iteratively computes variance components and leverages them for a bivariate model, covering both the mean and dispersion part of the original model. In DHGLMF90, variance component estimation is performed using REML through BLUPF90+. The software was tested using both simulated and real datasets, the latter from previous studies. Additionally, the simulations were replicated to ensure a comprehensive evaluation of the DHGLMF90 performance. Results indicated that, in most cases, there were no significant differences in estimation compared with results obtained from previous studies. DHGLMF90 converged in order of magnitude faster than Bayesian methods. Future developments will include analyzing datasets with genomic information and multiple-trait models. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Generalized linear mixed model es_ES
dc.subject Residual variance es_ES
dc.subject Variance components es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title 118 DHGLMF90: A software tool using double hierarchical generalized linear models for estimating the genetic heterogeneity of residual variance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jas/skae234.035 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Alvarez Munera, A.; Bermann, M.; Ibáñez-Escriche, N.; Casto-Rebollo, C.; Misztal, I.; Lourenco, D. (2024). 118 DHGLMF90: A software tool using double hierarchical generalized linear models for estimating the genetic heterogeneity of residual variance. Journal of Animal Science. 102:31-32. https://doi.org/10.1093/jas/skae234.035 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jas/skae234.035 es_ES
dc.description.upvformatpinicio 31 es_ES
dc.description.upvformatpfin 32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 102 es_ES
dc.relation.pasarela S\527598 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem