- -

NMR-Based Metabolomics for the Identification of Biomarkers of Disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

NMR-Based Metabolomics for the Identification of Biomarkers of Disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Bernardos Bau, Andrea es_ES
dc.contributor.advisor Martínez Bisbal, María Carmen es_ES
dc.contributor.advisor Martínez Mañez, Ramón es_ES
dc.contributor.author Botello Marabotto, Marina Dolores es_ES
dc.date.accessioned 2024-11-07T10:18:10Z
dc.date.available 2024-11-07T10:18:10Z
dc.date.created 2024-09-30
dc.date.issued 2024-11-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211472
dc.description.abstract [ES] La tesis doctoral titulada "NMR-based metabolomics for the identification of biomarkers of disease" explora el potencial de la metabolómica mediante espectroscopía de resonancia magnética nuclear (RMN) para la identificación de biomarcadores de enfermedades, permitiendo un diagnóstico temprano y no invasivo, así como el seguimiento de pacientes. El estudio se centra en cuatro enfermedades: Alzheimer, glaucoma, aterosclerosis y vulnerabilidad de placa, y fibrosis pulmonar tras neumonía por COVID-19. En la introducción, se describe el proceso de análisis metabolómico para la identificación de biomarcadores y las principales plataformas y herramientas estadísticas utilizadas en el análisis mediante RMN. Se destacan las características fisiopatológicas de las enfermedades estudiadas, las formas actuales de diagnóstico y la necesidad de nuevos marcadores. El primer capítulo aborda la identificación de biomarcadores para el Alzheimer y la progresión de deterioro cognitivo leve (MCI) a Alzheimer mediante análisis de suero. Se desarrollaron modelos de clasificación que discriminaron entre Alzheimer, MCI y controles sanos. La investigación encontró que ciertos metabolitos, como lisina, piruvato y colina, presentan concentraciones distintas según la evolución del MCI. El segundo capítulo estudia las diferencias metabolómicas entre MCI y controles mediante análisis de plasma, combinando RMN y marcadores de peroxidación lipídica detectados con UPLC-MS/MS. La combinación de ambas técnicas mejoró la identificación de biomarcadores, destacando metabolitos como isoleucina, valina y glutamato. El tercer capítulo analiza lágrimas de pacientes con glaucoma primario de ángulo abierto (POAG) para identificar biomarcadores en un medio mínimamente invasivo. Se identificaron metabolitos como taurina, glicina y glucosa como potenciales biomarcadores. En el cuarto capítulo se estudian placas de ateroma y suero de pacientes con estenosis de carótida para identificar biomarcadores de vulnerabilidad de placa. En placa, se identificaron mio-inositol y glutamato como potenciales biomarcadores. En suero, se destacaron treonina, histamina y ácidos grasos insaturados. El quinto capítulo se enfoca en pacientes que desarrollaron fibrosis pulmonar tras neumonía por COVID-19, identificando biomarcadores en suero que permiten predecir la fibrosis, destacando glucosa, valina y ácidos grasos. Finalmente, se presenta la discusión y las conclusiones generales, subrayando la relevancia de la metabolómica mediante RMN para identificar biomarcadores tempranos y no invasivos, lo que podría cubrir una necesidad crítica en la medicina actual. es_ES
dc.description.abstract [CA] La tesi doctoral titulada "Metabolòmica basada en RMN per a la identificació de biomarcadors de malaltia" explora el potencial de la metabolòmica mitjançant espectroscòpia de ressonància magnètica nuclear (RMN) per a la identificació de biomarcadors de malalties, permetent un diagnòstic precoç i no invasiu, així com el seguiment de pacients. L'estudi se centra en quatre malalties: Alzheimer, glaucoma, aterosclerosi i vulnerabilitat de placa, i fibrosi pulmonar després de pneumònia per COVID-19. A la introducció, es descriu el procés d'anàlisi metabolòmic per a la identificació de biomarcadors i les principals plataformes i eines estadístiques utilitzades en l'anàlisi mitjançant RMN. Es destaquen les característiques fisiopatològiques de les malalties estudiades, les formes actuals de diagnòstic i la necessitat de nous marcadors. El primer capítol tracta sobre la identificació de biomarcadors per a l'Alzheimer i la progressió de deteriorament cognitiu lleu (MCI) a Alzheimer mitjançant anàlisi de sèrum. Es van desenvolupar models de classificació que van discriminar entre Alzheimer, MCI i controls sans. La investigació va trobar que certs metabòlits, com lisina, piruvat i colina, presenten concentracions diferents segons l'evolució del MCI. El segon capítol estudia les diferències metabolòmiques entre MCI i controls mitjançant anàlisi de plasma, combinant RMN i marcadors de peroxidació lipídica detectats amb UPLC-MS/MS. La combinació d'ambdues tècniques va millorar la identificació de biomarcadors, destacant metabòlits com isoleucina, valina i glutamat. El tercer capítol analitza llàgrimes de pacients amb glaucoma primari d'angle obert (POAG) per a identificar biomarcadors en un medi mínimament invasiu. Es van identificar metabòlits com taurina, glicina i glucosa com a potencials biomarcadors. En el quart capítol s'estudien plaques d'ateroma i sèrum de pacients amb estenosi de caròtida per a identificar biomarcadors de vulnerabilitat de placa. En placa, es van identificar mio-inositol i glutamat com a potencials biomarcadors. En sèrum, es van destacar treonina, histamina i àcids grassos insaturats. El cinqué capítol se centra en pacients que van desenvolupar fibrosi pulmonar després de pneumònia per COVID-19, identificant biomarcadors en sèrum que permeten predir la fibrosi, destacant glucosa, valina i àcids grassos. Finalment, es presenten les conclusions generals, subratllant la rellevància de la metabolòmica mitjançant RMN per a identificar biomarcadors precoços i no invasius, la qual cosa podria cobrir una necessitat crítica en la medicina actual. es_ES
dc.description.abstract [EN] The doctoral thesis titled "NMR-based metabolomics for the identification of biomarkers of disease" explores the potential of metabolomics through nuclear magnetic resonance (NMR) spectroscopy for the identification of disease biomarkers, enabling early and non-invasive diagnosis, as well as patient monitoring. The study focuses on four diseases: Alzheimer's, glaucoma, atherosclerosis and plaque vulnerability, and pulmonary fibrosis after COVID-19 pneumonia. The introduction describes the metabolomic analysis process for biomarker identification and the main platforms and statistical tools used in NMR-based analysis. The study highlights the pathophysiological characteristics of the diseases studied, current diagnostic methods, and the need for new biomarkers. The first chapter addresses the identification of biomarkers for Alzheimer's disease and the progression of mild cognitive impairment (MCI) to Alzheimer's using serum analysis. Classification models were developed to distinguish between Alzheimer's, MCI, and healthy controls. The research found that certain metabolites, such as lysine, pyruvate, and choline, show different concentrations depending on the evolution of MCI. The second chapter studies metabolomic differences between MCI and controls using plasma analysis, combining NMR and lipid peroxidation markers detected by UPLC-MS/MS. The combination of both techniques improved biomarker identification, highlighting metabolites such as isoleucine, valine, and glutamate. The third chapter analyzes tears from patients with primary open-angle glaucoma (POAG) to identify biomarkers in a minimally invasive medium. Metabolites such as taurine, glycine, and glucose were identified as potential biomarkers. In the fourth chapter, atheroma plaques and serum from patients with carotid stenosis were studied to identify biomarkers of plaque vulnerability. In plaques, myo-inositol and glutamate were identified as potential biomarkers. In serum, threonine, histamine, and unsaturated fatty acids were highlighted. The fifth chapter focuses on patients who developed pulmonary fibrosis after COVID-19 pneumonia, identifying serum biomarkers that can predict fibrosis, with glucose, valine, and fatty acids being prominent. Finally, the general discussion and conclusions are presented, emphasizing the relevance of NMR-based metabolomics in identifying early and non-invasive biomarkers, potentially addressing a critical need in modern medicine. es_ES
dc.format.extent 241 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metabolomics es_ES
dc.subject NMR spectroscopy es_ES
dc.subject Biomarkers es_ES
dc.subject Disease es_ES
dc.subject Alzheimer es_ES
dc.subject Atherosclerosis es_ES
dc.subject Glaucoma es_ES
dc.subject Pulmonary fibrosis es_ES
dc.subject Fibrosis pulmonar es_ES
dc.subject Marcadores de enfermedad es_ES
dc.subject Metabolómica es_ES
dc.subject Espectroscopia de RMN es_ES
dc.subject Biomarcadores es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title NMR-Based Metabolomics for the Identification of Biomarkers of Disease es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/211472 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Botello Marabotto, MD. (2024). NMR-Based Metabolomics for the Identification of Biomarkers of Disease [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/211472 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\14268 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem