Mostrar el registro sencillo del ítem
dc.contributor.author | Viciano-Tudela, Sandra | es_ES |
dc.contributor.author | Parra, Lorena | es_ES |
dc.contributor.author | Sendra, Sandra | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2024-11-07T19:03:45Z | |
dc.date.available | 2024-11-07T19:03:45Z | |
dc.date.issued | 2023-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211498 | |
dc.description.abstract | [EN] In coastal water monitoring, abrupt pH changes might indicate different pollution sources. Existing sensors for pH monitoring in coastal waters at low cost are mainly based on a glass membrane and a reference electrode. Virtual sensors are elements capable of measuring certain parameters based on data from other parameters or variables. The aim of this paper is to propose the use of a virtual pH sensor based on measuring different physical effects of H+ on the electromagnetic field generated by an inductor. Double inductors based on two solenoids of 40 and 80 spires are used as sensing elements. Samples with pH from 4 to 11 are used, and the effect of temperature is evaluated using samples from 10 to 40 degrees C. The induced voltage and the delay of the signal are measured for powering frequencies from 100 to 500 kHz. These data of delay, induced voltage, frequency, and temperature are included in a probabilistic neural network to classify these data according to the pH. The results indicate low accuracy for samples with a pH of 11. A second analysis, excluding these data, offered correctly classified cases of 88.9%. The system can achieve considerable high accuracy (87.5%) using data gathered at a single frequency, from 246 to 248 kHz. The predicted versus observed data is correlated with a linear model characterized by an R2 of 0.69, which is similar to the ones observed in other virtual sensors. | es_ES |
dc.description.sponsorship | This work is partially funded by the Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital through the "Expresiones de Interes de Proyectos de Investigacion Alineados con Thinkinazul" project GVA-THINKINAZUL/2021/002 and by the "Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020" project PID2020-114467RR-C33/AEI/10.13039/501100011033. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Chemosensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Soft sensor | es_ES |
dc.subject | Physical sensor | es_ES |
dc.subject | Inductor | es_ES |
dc.subject | Coastal water | es_ES |
dc.subject | Seawater | es_ES |
dc.subject | Acidification | es_ES |
dc.subject | Water pollution | es_ES |
dc.subject | Ocean | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | A Low-Cost Virtual Sensor for Underwater pH Monitoring in Coastal Waters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/chemosensors11040215 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114467RR-C33/ES/RED HETEROGENEA INTELIGENTE DE SENSORES INALAMBRICOS PARA MONITORIZAR Y ESTIMAR EL CONTENIDO DE RESINA DE CISTUS LADANIFER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//GVA-THINKINAZUL%2F2021%2F002/ES/Red de Sensores y big dAta para La obserVAcion Del entOrno maRino | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Viciano-Tudela, S.; Parra, L.; Sendra, S.; Lloret, J. (2023). A Low-Cost Virtual Sensor for Underwater pH Monitoring in Coastal Waters. Chemosensors. 11(4). https://doi.org/10.3390/chemosensors11040215 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/chemosensors11040215 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2227-9040 | es_ES |
dc.relation.pasarela | S\530666 | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |