Mostrar el registro completo del ítem
Dolz Zaragozá, MF.; Barrachina, S.; Martínez, H.; Castelló, A.; Maciá, A.; Fabregat, G.; Tomás Domínguez, AE. (2023). Performance energy trade-offs of deep learning convolution algorithms on ARM processors. The Journal of Supercomputing. 79. https://doi.org/10.1007/s11227-023-05050-4
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211504
Título: | Performance energy trade-offs of deep learning convolution algorithms on ARM processors | |
Autor: | Dolz Zaragozá, Manuel Francisco Barrachina, Sergio Martínez, Héctor Maciá, Antonio Fabregat, Germán | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In this work, we assess the performance and energy efciency of high-performance
codes for the convolution operator, based on the direct, explicit/implicit lowering and Winograd algorithms used for deep learning (DL) ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1007/s11227-023-05050-4 | |
Código del Proyecto: |
...[+] |
|
Agradecimientos: |
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/AEI/10.13039/501100011033. Manuel F. Dolz was also supported ...[+]
|
|
Tipo: |
|