- -

Achieving Optimal Order in a Novel Family of Numerical Methods: Insights from Convergence and Dynamical Analysis Results

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Achieving Optimal Order in a Novel Family of Numerical Methods: Insights from Convergence and Dynamical Analysis Results

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moscoso-Martínez, Marlon es_ES
dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Ureña-Callay, Gabriela es_ES
dc.date.accessioned 2024-11-07T19:04:02Z
dc.date.available 2024-11-07T19:04:02Z
dc.date.issued 2024-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211510
dc.description.abstract [EN] In this manuscript, we introduce a novel parametric family of multistep iterative methods designed to solve nonlinear equations. This family is derived from a damped Newton's scheme but includes an additional Newton step with a weight function and a "frozen" derivative, that is, the same derivative than in the previous step. Initially, we develop a quad-parametric class with a first-order convergence rate. Subsequently, by restricting one of its parameters, we accelerate the convergence to achieve a third-order uni-parametric family. We thoroughly investigate the convergence properties of this final class of iterative methods, assess its stability through dynamical tools, and evaluate its performance on a set of test problems. We conclude that there exists one optimal fourth-order member of this class, in the sense of Kung-Traub's conjecture. Our analysis includes stability surfaces and dynamical planes, revealing the intricate nature of this family. Notably, our exploration of stability surfaces enables the identification of specific family members suitable for scalar functions with a challenging convergence behavior, as they may exhibit periodical orbits and fixed points with attracting behavior in their corresponding dynamical planes. Furthermore, our dynamical study finds members of the family of iterative methods with exceptional stability. This property allows us to converge to the solution of practical problem-solving applications even from initial estimations very far from the solution. We confirm our findings with various numerical tests, demonstrating the efficiency and reliability of the presented family of iterative methods. es_ES
dc.description.sponsorship Funded with Ayuda a Primeros Proyectos de Investigación (PAID-06-23), Vicerrectorado de Investigación de la Universitat Politècnica de València (UPV). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Axioms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear equations es_ES
dc.subject Optimal iterative methods es_ES
dc.subject Convergence analysis es_ES
dc.subject Dynamical study es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Achieving Optimal Order in a Novel Family of Numerical Methods: Insights from Convergence and Dynamical Analysis Results es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/axioms13070458 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-06-23//Mejora de la Eficiencia en la Resolución de problemas no LINeales (MERLIN)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Moscoso-Martínez, M.; Chicharro, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Ureña-Callay, G. (2024). Achieving Optimal Order in a Novel Family of Numerical Methods: Insights from Convergence and Dynamical Analysis Results. Axioms. 13(7). https://doi.org/10.3390/axioms13070458 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/axioms13070458 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2075-1680 es_ES
dc.relation.pasarela S\521791 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem