- -

Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yepes-Bellver, Lorena es_ES
dc.contributor.author Brun-Izquierdo, Alejandro es_ES
dc.contributor.author Alcalá-González, Julián es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2024-11-13T19:12:12Z
dc.date.available 2024-11-13T19:12:12Z
dc.date.issued 2024-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211698
dc.description.abstract [EN] The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck¿s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. The results show that both models generally overestimate the observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root mean square errors (RMSEs). Neither the Kriging model nor the neural network provides precise predictions but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency. es_ES
dc.description.sponsorship Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bridges es_ES
dc.subject Embodied energy es_ES
dc.subject Optimization es_ES
dc.subject Prestressed concrete es_ES
dc.subject Artificial neural network es_ES
dc.subject Surrogate model es_ES
dc.subject Kriging es_ES
dc.subject Sustainability es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su16198450 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2023-150003OB-I00//Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Yepes-Bellver, L.; Brun-Izquierdo, A.; Alcalá-González, J.; Yepes, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability. 16(19). https://doi.org/10.3390/su16198450 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su16198450 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\527409 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem