- -

Forecasting electricity demand of municipalities through artificial neural networks and metered supply point classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Forecasting electricity demand of municipalities through artificial neural networks and metered supply point classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sergio Mateo-Barcos es_ES
dc.contributor.author Ribó-Pérez, David Gabriel es_ES
dc.contributor.author Rodríguez-García, Javier es_ES
dc.contributor.author Alcázar-Ortega, Manuel es_ES
dc.date.accessioned 2024-11-13T19:12:19Z
dc.date.available 2024-11-13T19:12:19Z
dc.date.issued 2024-06 es_ES
dc.identifier.issn 2352-4847 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211702
dc.description.abstract [EN] This study develops a methodology to characterise and forecast large consumers¿ electricity demand, particularly municipalities, with hundreds of different metered supply points based on the previous characterisation of facilities¿ consumption. Demand forecasting allows consumers to improve their participation in electricity markets and manage their electricity consumption. The method considers a classification by different types of metered supply points combined with artificial neural networks to obtain hourly forecasts using well-known parameters such as day types, hourly temperature, the last hour of electricity consumption, and sunrise and sunset time. We apply the methodology to the municipality of Valencia using over five hundred hourly load profiles for a year during 2017 and 2018. Our results present aggregated forecasts with a maximum Mean Absolute Percentage Error of 3.8% per day, outperforming the same forecast without classifying Metered Supply Points. We conclude that a correct electricity demand forecast for a consumer with different types of consumption does not need submetering, but characterising Metered Supply Points is an option with lower costs that allows for better predictions. es_ES
dc.description.sponsorship This work was supported in part by the Universitat Politècnica de València, Spain under grant PAID-10-21, and by the Cátedra deTransición Energética Urbana (Las Naves-FVCiE-UPV). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Reports es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Artificial neural networks es_ES
dc.subject Municipalities es_ES
dc.subject Load forecasting es_ES
dc.subject Metered supply points es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Forecasting electricity demand of municipalities through artificial neural networks and metered supply point classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.egyr.2024.03.023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-21/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Sergio Mateo-Barcos; Ribó-Pérez, DG.; Rodríguez-García, J.; Alcázar-Ortega, M. (2024). Forecasting electricity demand of municipalities through artificial neural networks and metered supply point classification. Energy Reports. 11:3533-3549. https://doi.org/10.1016/j.egyr.2024.03.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.egyr.2024.03.023 es_ES
dc.description.upvformatpinicio 3533 es_ES
dc.description.upvformatpfin 3549 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.relation.pasarela S\512656 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Cátedra de Transición Energética Urbana, Universitat Politècnica de València es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES
upv.costeAPC 2400 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem