- -

Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Malviya, Ashwani Kumar es_ES
dc.contributor.author Zarehparast Malekzadeh, Mehdi es_ES
dc.contributor.author Santarremigia, Francisco Enrique es_ES
dc.contributor.author Molero, Gemma Dolores es_ES
dc.contributor.author Villalba Sanchis, Ignacio es_ES
dc.contributor.author Martínez Fernández, Pablo es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2024-11-13T19:13:07Z
dc.date.available 2024-11-13T19:13:07Z
dc.date.issued 2024-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211729
dc.description.abstract [EN] This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model. es_ES
dc.description.sponsorship This research has received funding from the European Union's Horizon 2020 research and innovation program within the LOLABAT project under grant agreement number 963576. This paper reflects only the author's view, and the funding agency is not responsible for any use that may be made of the information it contains. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject LCCA es_ES
dc.subject LCA es_ES
dc.subject MOPSO es_ES
dc.subject Genetic algorithms es_ES
dc.subject AHP es_ES
dc.subject Sustainability KPIs es_ES
dc.subject AI es_ES
dc.subject NiZn batteries es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su16156425 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/963576/EU/Long LAsting BATtery/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Malviya, AK.; Zarehparast Malekzadeh, M.; Santarremigia, FE.; Molero, GD.; Villalba Sanchis, I.; Martínez Fernández, P.; Yepes, V. (2024). Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO). Sustainability. 16(15). https://doi.org/10.3390/su16156425 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su16156425 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\523408 es_ES
dc.contributor.funder European Commission es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem