Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Vargas, Elena | es_ES |
dc.contributor.author | Carrasco-Ribelles, Lucia Amalia | es_ES |
dc.contributor.author | Marín-Morales, Javier | es_ES |
dc.contributor.author | Ayuso-Molina, Carla | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2024-11-14T19:13:44Z | |
dc.date.available | 2024-11-14T19:13:44Z | |
dc.date.issued | 2024-07-24 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211807 | |
dc.description.abstract | [EN] Introduction: Personality plays a crucial role in shaping an individual¿s interactions with the world. The Big Five personality traits are widely used frameworks that help describe people¿s psychological behaviours. These traits predict how individuals behave within an organizational setting. Methods: In this article, we introduce a virtual reality (VR) strategy for relatively scoring an individual¿s personality to evaluate the feasibility of predicting personality traits from implicit measures captured from users interacting in VR simulations of different organizational situations. Specifically, eye-tracking and decision-making patterns were used to classify individuals according to their level in each of the Big Five dimensions using statistical machine learning (ML) methods. The virtual environment was designed using an evidence-centered design approach. Results: The dimensions were assessed using NEO-FFI inventory. A random forest ML model provided 83% accuracy in predicting agreeableness. A k-nearest neighbour ML model provided 75%, 75%, and 77% accuracy in predicting openness, neuroticism, and conscientiousness, respectively. A support vector machine model provided 85% accuracy for predicting extraversion. These analyses indicated that the dimensions could be differentiated by eye-gaze patterns and behaviours during immersive VR. Discussion: Eye-tracking measures contributed more significantly to this differentiation than the behavioural metrics. Currently, we have obtained promising results with our group of participants, but to ensure the robustness and generalizability of our findings, it is imperative to replicate the study with a considerably larger sample. This study demonstrates the potential of VR and ML to recognize personality traits. | es_ES |
dc.description.sponsorship | The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This framework is developed as part of the EXPERIENCE project\footnote{EXPERIENCE PROJECT, Grant Agreement No. 101017727 Experience, https://experience-project.eu/.%7D, a European collaboration project involving multiple universities. The project receives funding from the European Union's Horizon 2020 research and innovation program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Psychology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Big five traits | es_ES |
dc.subject | Eye-tracking | es_ES |
dc.subject | Implicit measures | es_ES |
dc.subject | Personality traits | es_ES |
dc.subject | Statistical machine learning | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpsyg.2024.1342018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101017727/EU/The ¿Extended-Personal Reality¿: augmented recording and transmission of virtual senses through artificial-IntelligENCE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Parra Vargas, E.; Carrasco-Ribelles, LA.; Marín-Morales, J.; Ayuso-Molina, C.; Alcañiz Raya, ML. (2024). Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment. Frontiers in Psychology. 15. https://doi.org/10.3389/fpsyg.2024.1342018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpsyg.2024.1342018 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.identifier.eissn | 1664-1078 | es_ES |
dc.identifier.pmid | 39114589 | es_ES |
dc.identifier.pmcid | PMC11305179 | es_ES |
dc.relation.pasarela | S\521951 | es_ES |
dc.contributor.funder | European Commission | es_ES |
upv.costeAPC | 3986.96 | es_ES |