- -

Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra Vargas, Elena es_ES
dc.contributor.author Carrasco-Ribelles, Lucia Amalia es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Ayuso-Molina, Carla es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2024-11-14T19:13:44Z
dc.date.available 2024-11-14T19:13:44Z
dc.date.issued 2024-07-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211807
dc.description.abstract [EN] Introduction: Personality plays a crucial role in shaping an individual¿s interactions with the world. The Big Five personality traits are widely used frameworks that help describe people¿s psychological behaviours. These traits predict how individuals behave within an organizational setting. Methods: In this article, we introduce a virtual reality (VR) strategy for relatively scoring an individual¿s personality to evaluate the feasibility of predicting personality traits from implicit measures captured from users interacting in VR simulations of different organizational situations. Specifically, eye-tracking and decision-making patterns were used to classify individuals according to their level in each of the Big Five dimensions using statistical machine learning (ML) methods. The virtual environment was designed using an evidence-centered design approach. Results: The dimensions were assessed using NEO-FFI inventory. A random forest ML model provided 83% accuracy in predicting agreeableness. A k-nearest neighbour ML model provided 75%, 75%, and 77% accuracy in predicting openness, neuroticism, and conscientiousness, respectively. A support vector machine model provided 85% accuracy for predicting extraversion. These analyses indicated that the dimensions could be differentiated by eye-gaze patterns and behaviours during immersive VR. Discussion: Eye-tracking measures contributed more significantly to this differentiation than the behavioural metrics. Currently, we have obtained promising results with our group of participants, but to ensure the robustness and generalizability of our findings, it is imperative to replicate the study with a considerably larger sample. This study demonstrates the potential of VR and ML to recognize personality traits. es_ES
dc.description.sponsorship The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This framework is developed as part of the EXPERIENCE project\footnote{EXPERIENCE PROJECT, Grant Agreement No. 101017727 Experience, https://experience-project.eu/.%7D, a European collaboration project involving multiple universities. The project receives funding from the European Union's Horizon 2020 research and innovation program. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Psychology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Big five traits es_ES
dc.subject Eye-tracking es_ES
dc.subject Implicit measures es_ES
dc.subject Personality traits es_ES
dc.subject Statistical machine learning es_ES
dc.subject Virtual reality es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpsyg.2024.1342018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101017727/EU/The ¿Extended-Personal Reality¿: augmented recording and transmission of virtual senses through artificial-IntelligENCE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Parra Vargas, E.; Carrasco-Ribelles, LA.; Marín-Morales, J.; Ayuso-Molina, C.; Alcañiz Raya, ML. (2024). Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment. Frontiers in Psychology. 15. https://doi.org/10.3389/fpsyg.2024.1342018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpsyg.2024.1342018 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.identifier.eissn 1664-1078 es_ES
dc.identifier.pmid 39114589 es_ES
dc.identifier.pmcid PMC11305179 es_ES
dc.relation.pasarela S\521951 es_ES
dc.contributor.funder European Commission es_ES
upv.costeAPC 3986.96 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem