- -

Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guerrero, Antoni es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Garcia-Sanchez, Alvaro es_ES
dc.contributor.author Pita-Romero, Luis es_ES
dc.date.accessioned 2024-11-15T19:15:45Z
dc.date.available 2024-11-15T19:15:45Z
dc.date.issued 2024-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211860
dc.description.abstract [EN] In urban logistics, effective maintenance is crucial for maintaining the reliability and efficiency of energy supply systems, impacting both asset performance and operational stability. This paper addresses the scheduling and routing plans for maintenance of power generation assets over a multi-period horizon. We model this problem as a multi-period team orienteering problem. To address this multi-period challenge, we propose a dual approach: a novel reinforcement learning (RL) framework and a biased-randomized heuristic algorithm. The RL-based method dynamically learns from real-time operational data and evolving asset conditions, adapting to changes in asset health and failure probabilities to optimize decision making. In addition, we develop and apply a biased-randomized heuristic algorithm designed to provide effective solutions within practical computational limits. Our approach is validated through a series of computational experiments comparing the RL model and the heuristic algorithm. The results demonstrate that, when properly trained, the RL-based model is able to offer equivalent or even superior performance compared to the heuristic algorithm. es_ES
dc.description.sponsorship The present work was carried out as part of the IA4TES project "Artificial Intelligence for Sustainable Energy Transition". The project belongs to the "Misiones de I+D en Inteligencia Artificial 2021" program funded by the Spanish Government through the "Plan de Recuperacion". This research has also been partially funded by the Spanish Ministry of Science (PID2022-138860NB-I00 and RED2022-134703-T). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optimization es_ES
dc.subject Energy supply systems es_ES
dc.subject City logistics es_ES
dc.subject Team orienteering problem es_ES
dc.subject Biased-randomized algorithms es_ES
dc.subject Reinforcement learning es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math12193140 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Guerrero, A.; Juan, AA.; Garcia-Sanchez, A.; Pita-Romero, L. (2024). Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning. Mathematics. 12(19). https://doi.org/10.3390/math12193140 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math12193140 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\530932 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem