Mostrar el registro sencillo del ítem
dc.contributor.author | Guerrero, Antoni | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.contributor.author | Garcia-Sanchez, Alvaro | es_ES |
dc.contributor.author | Pita-Romero, Luis | es_ES |
dc.date.accessioned | 2024-11-15T19:15:45Z | |
dc.date.available | 2024-11-15T19:15:45Z | |
dc.date.issued | 2024-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211860 | |
dc.description.abstract | [EN] In urban logistics, effective maintenance is crucial for maintaining the reliability and efficiency of energy supply systems, impacting both asset performance and operational stability. This paper addresses the scheduling and routing plans for maintenance of power generation assets over a multi-period horizon. We model this problem as a multi-period team orienteering problem. To address this multi-period challenge, we propose a dual approach: a novel reinforcement learning (RL) framework and a biased-randomized heuristic algorithm. The RL-based method dynamically learns from real-time operational data and evolving asset conditions, adapting to changes in asset health and failure probabilities to optimize decision making. In addition, we develop and apply a biased-randomized heuristic algorithm designed to provide effective solutions within practical computational limits. Our approach is validated through a series of computational experiments comparing the RL model and the heuristic algorithm. The results demonstrate that, when properly trained, the RL-based model is able to offer equivalent or even superior performance compared to the heuristic algorithm. | es_ES |
dc.description.sponsorship | The present work was carried out as part of the IA4TES project "Artificial Intelligence for Sustainable Energy Transition". The project belongs to the "Misiones de I+D en Inteligencia Artificial 2021" program funded by the Spanish Government through the "Plan de Recuperacion". This research has also been partially funded by the Spanish Ministry of Science (PID2022-138860NB-I00 and RED2022-134703-T). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Energy supply systems | es_ES |
dc.subject | City logistics | es_ES |
dc.subject | Team orienteering problem | es_ES |
dc.subject | Biased-randomized algorithms | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math12193140 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Guerrero, A.; Juan, AA.; Garcia-Sanchez, A.; Pita-Romero, L. (2024). Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning. Mathematics. 12(19). https://doi.org/10.3390/math12193140 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math12193140 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\530932 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |