- -

SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons-Escat, Lucía es_ES
dc.contributor.author Navarro-Edo, Marta es_ES
dc.contributor.author Petit Martí, Salvador Vicente es_ES
dc.contributor.author Pons Terol, Julio es_ES
dc.contributor.author Gómez Requena, María Engracia es_ES
dc.contributor.author Sahuquillo Borrás, Julio es_ES
dc.date.accessioned 2024-11-15T19:16:08Z
dc.date.available 2024-11-15T19:16:08Z
dc.date.issued 2024-10-29 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211876
dc.description.abstract [EN] The microarchitecture of general-purpose processors is continuously evolving to adapt to the new computation and memory demands of incoming workloads. In this regard, new circuitry is added to execute specific instructions like vector multiplication or string operations. These enhancements and the support of multiple threads per core make simultaneous multithreading (SMT) processors dominate the market for data center processors. Regarding emerging workloads, machine learning is taking an important role in many research domains like biomedicine, economics, and social sciences. This paper analyzes the efficiency of machine learning workloads running in SMT mode (two threads per core) versus running them in ST mode (single-threaded) with twice the number of cores. Experimental results in an Intel Xeon Skylake-X processor show an SMT efficiency falling between 80% and 100% across the studied workloads. These results prove two main findings: i) last-generation SMT processors are excellent candidates to execute ML workloads as they achieve a high SMT efficiency, and ii) if the performance of two major resources (i.e., FP double operator and core's caches) was boosted, all the workloads would achieve an almost perfect SMT efficiency. Moreover, results show that there is still room to support more threads without adding extra hardware. The discussed findings are aimed at providing insights to design future processors for ML workloads. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Ciencia e Innovación and European ERDF under grants PID2021 123627OB-C51 and TED2021 130233B-C32. Marta Navarro is supported by Subvenciones para la contratación de personal investigador predoctoral by CIACIF/2021/413. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Journal of Big Data es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject ML methods es_ES
dc.subject Simultaneous multithreading (SMT) es_ES
dc.subject Machine learning es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40537-024-01013-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123627OB-C51/ES/MEJORA DEL PROCESADOR, SUBSISTEMA DE MEMORIA, ACELERADORES Y REDES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIACIF%2F2021%2F413/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica,Técnica y de Innovación 2021-2023/TED2021-130233B-C32/ES/Servidores y redes con alta eficiencia energética para centros de procesos de datos es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Pons-Escat, L.; Navarro-Edo, M.; Petit Martí, SV.; Pons Terol, J.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2024). SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis. Journal of Big Data. 11(1). https://doi.org/10.1186/s40537-024-01013-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40537-024-01013-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2196-1115 es_ES
dc.relation.pasarela S\532750 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem