Mostrar el registro sencillo del ítem
dc.contributor.author | Pons-Escat, Lucía | es_ES |
dc.contributor.author | Navarro-Edo, Marta | es_ES |
dc.contributor.author | Petit Martí, Salvador Vicente | es_ES |
dc.contributor.author | Pons Terol, Julio | es_ES |
dc.contributor.author | Gómez Requena, María Engracia | es_ES |
dc.contributor.author | Sahuquillo Borrás, Julio | es_ES |
dc.date.accessioned | 2024-11-15T19:16:08Z | |
dc.date.available | 2024-11-15T19:16:08Z | |
dc.date.issued | 2024-10-29 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211876 | |
dc.description.abstract | [EN] The microarchitecture of general-purpose processors is continuously evolving to adapt to the new computation and memory demands of incoming workloads. In this regard, new circuitry is added to execute specific instructions like vector multiplication or string operations. These enhancements and the support of multiple threads per core make simultaneous multithreading (SMT) processors dominate the market for data center processors. Regarding emerging workloads, machine learning is taking an important role in many research domains like biomedicine, economics, and social sciences. This paper analyzes the efficiency of machine learning workloads running in SMT mode (two threads per core) versus running them in ST mode (single-threaded) with twice the number of cores. Experimental results in an Intel Xeon Skylake-X processor show an SMT efficiency falling between 80% and 100% across the studied workloads. These results prove two main findings: i) last-generation SMT processors are excellent candidates to execute ML workloads as they achieve a high SMT efficiency, and ii) if the performance of two major resources (i.e., FP double operator and core's caches) was boosted, all the workloads would achieve an almost perfect SMT efficiency. Moreover, results show that there is still room to support more threads without adding extra hardware. The discussed findings are aimed at providing insights to design future processors for ML workloads. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Ciencia e Innovación and European ERDF under grants PID2021 123627OB-C51 and TED2021 130233B-C32. Marta Navarro is supported by Subvenciones para la contratación de personal investigador predoctoral by CIACIF/2021/413. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SpringerOpen | es_ES |
dc.relation.ispartof | Journal of Big Data | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | ML methods | es_ES |
dc.subject | Simultaneous multithreading (SMT) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s40537-024-01013-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123627OB-C51/ES/MEJORA DEL PROCESADOR, SUBSISTEMA DE MEMORIA, ACELERADORES Y REDES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIACIF%2F2021%2F413/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica,Técnica y de Innovación 2021-2023/TED2021-130233B-C32/ES/Servidores y redes con alta eficiencia energética para centros de procesos de datos | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Pons-Escat, L.; Navarro-Edo, M.; Petit Martí, SV.; Pons Terol, J.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2024). SMT Efficiency in Supervised ML Methods: a Throughput and Interference Analysis. Journal of Big Data. 11(1). https://doi.org/10.1186/s40537-024-01013-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s40537-024-01013-5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2196-1115 | es_ES |
dc.relation.pasarela | S\532750 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |