- -

Proposal of a New System for Essential Oil Classification Based on Low-Cost Gas Sensor and Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Proposal of a New System for Essential Oil Classification Based on Low-Cost Gas Sensor and Machine Learning Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Viciano-Tudela, Sandra es_ES
dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Navarro-García, Paula es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-11-18T19:06:12Z
dc.date.available 2024-11-18T19:06:12Z
dc.date.issued 2023-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211931
dc.description.abstract [EN] Essential oils are valuable in various industries, but their easy adulteration can cause adverse health effects. Electronic nasal sensors offer a solution for adulteration detection. This article proposes a new system for characterising essential oils based on low-cost sensor networks and machine learning techniques. The sensors used belong to the MQ family (MQ-2, MQ-3, MQ-4, MQ-5, MQ-6, MQ-7, and MQ-8). Six essential oils were used, including Cistus ladanifer, Pinus pinaster, and Cistus ladanifer oil adulterated with Pinus pinaster, Melaleuca alternifolia, tea tree, and red fruits. A total of up to 7100 measurements were included, with more than 118 h of measurements of 33 different parameters. These data were used to train and compare five machine learning algorithms: discriminant analysis, support vector machine, k-nearest neighbours, neural network, and naive Bayesian when the data were used individually or when hourly mean values were included. To evaluate the performance of the included machine learning algorithms, accuracy, precision, recall, and F1-score were considered. The study found that using k-nearest neighbours, accuracy, recall, F1-score, and precision values were 1, 0.99, 0.99, and 1, respectively. The accuracy reached 100% with k-nearest neighbours using only 2 parameters for averaged data or 15 parameters for individual data. es_ES
dc.description.sponsorship This work is partially funded by the Programa Estatal de I + D + i Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020 project PID2020-114467RR-C33/AEI/10.13039/501100011033 and by "Proyectos Estrategicos Orientados a la Transicion Ecologica y a la Transicion Digital" project TED2021-131040B-C31. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MQ sensors es_ES
dc.subject Adulteration es_ES
dc.subject Artificial neural network es_ES
dc.subject Classification algorithms es_ES
dc.subject Discriminant analysis es_ES
dc.subject ENose es_ES
dc.subject K-nearest neighbours es_ES
dc.subject Multiclass classification es_ES
dc.subject Naive Bayes classifier es_ES
dc.subject Support vector machine es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Proposal of a New System for Essential Oil Classification Based on Low-Cost Gas Sensor and Machine Learning Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23135812 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114467RR-C33/ES/RED HETEROGENEA INTELIGENTE DE SENSORES INALAMBRICOS PARA MONITORIZAR Y ESTIMAR EL CONTENIDO DE RESINA DE CISTUS LADANIFER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TED2021-131040B-C31/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Viciano-Tudela, S.; Parra, L.; Navarro-García, P.; Sendra, S.; Lloret, J. (2023). Proposal of a New System for Essential Oil Classification Based on Low-Cost Gas Sensor and Machine Learning Techniques. Sensors. 23(13). https://doi.org/10.3390/s23135812 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23135812 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 37447662 es_ES
dc.identifier.pmcid PMC10347007 es_ES
dc.relation.pasarela S\533111 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem