- -

Analytical approximations for multiple scattering in one-dimensional waveguides with small inclusions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytical approximations for multiple scattering in one-dimensional waveguides with small inclusions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lázaro, Mario es_ES
dc.contributor.author Wiltshaw, Richard es_ES
dc.contributor.author Craster, Richard V. es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2024-11-18T19:06:16Z
dc.date.available 2024-11-18T19:06:16Z
dc.date.issued 2025-01-01 es_ES
dc.identifier.issn 0888-3270 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211933
dc.description.abstract [EN] In this paper, we propose a new model to approximate the wave response of waveguides containing an arbitrary number of small inclusions. The theory is developed for general onedimensional elastic waveguides to study various types of modes, e.g. longitudinal, flexural, shear, torsional or coupled modes. The precise problem assumes the host material contains small inclusions, with different material and/or sectional properties which behave as scatterers from a wave propagation point of view. The inclusions are modelled through the formalism of generalized functions, with the Heaviside function accounting for the discontinuous jump in different sectional properties of the inclusions. For asymptotically small inclusions, the exact solution is shown to be equivalent to the Green's function. We hypothesize that these expressions are also valid when the size of the inclusions are small in comparison to the wavelength, allowing us to approximate small inhomogeneities as regular perturbations to the empty-waveguide (the homogeneous waveguide in the absence of scatterers) as point source terms. By approximating solutions through the Green's function, the multiple scattering problem is considerably simplified, allowing us to develop a general methodology in which the solution is expressed for any model for any elastic waveguide. The advantage of our approach is that, by expressing the constitutive equations in first order form as a matrix, the solutions can be expressed in matrix form; therefore, it is trivial to consider models with more degrees of freedom and to arrive at solutions to multiple scattering problems independent of the elastic model used. The theory is validated with two numerical examples, one with longitudinal waves (classical rod) and the other one with flexural waves (Timoshenko beam). An error analysis is performed to demonstrate the validity of the approximate solutions, where we propose a parameter quantifying the expected errors in the approximation dependent upon the parameters of the waveguide. The approximate solutions were shown to be significantly accurate up to the thresholds of application of each model considered. The approximate expressions were found to be easily applied to consider higher-order models for the waveguide and were simple to implement. es_ES
dc.description.sponsorship M.L. and L.M.G.-R. are grateful for the partial support under Grant No. PID2020-112759GB-I00 funded by MCIN/AEI/10.13039/501100011033, and also for the partial support under Grant No. PID2023-146237NB-I00 funded by MICIU/AEI/10.13039/501100011033. L.M.G.-R. acknowledge support from Grant No. CIAICO/2022/052 of the "Programa para la promocion de la investigacion cientifica, el desarrollo tecnologico y la innovacion en la Comunitat Valenciana" funded by Generalitat Valenciana, Spain. M.L is grateful for support under the "Programa de Recualificacion del Sistema Universitario Espanol para 2021-2023", funded by "Instrumento Europeo de Recuperacion (Next Generation EU) en el marco del Plan de Recuperacion, Transformacion y Resiliencia de Espana", a traves del Ministerio de Universidades. R.W and R.V.C acknowledge financial support from the EU H2020 FET-proactive project MetaVEH under grant agreement number 952039. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Mechanical Systems and Signal Processing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Elastic waveguide es_ES
dc.subject Material inclusion es_ES
dc.subject Sectional heterogeneity es_ES
dc.subject Multiple scattering es_ES
dc.subject Transfer matrix method es_ES
dc.subject Regular perturbations es_ES
dc.subject Green s function es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Analytical approximations for multiple scattering in one-dimensional waveguides with small inclusions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ymssp.2024.112046 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112759GB-I00/ES/METAESTRUCTURAS HIPERUNIFORMES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/952039/EU/Metamaterial Enabled Vibration Energy Harvesting/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIAICO%2F2022%2F052/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PID2023-146237NB-I00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Lázaro, M.; Wiltshaw, R.; Craster, RV.; García-Raffi, LM. (2025). Analytical approximations for multiple scattering in one-dimensional waveguides with small inclusions. Mechanical Systems and Signal Processing. 224. https://doi.org/10.1016/j.ymssp.2024.112046 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ymssp.2024.112046 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 224 es_ES
dc.relation.pasarela S\534019 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem